›› 2015, Vol. 36 ›› Issue (S1): 459-464.doi: 10.16285/j.rsm.2015.S1.079

• Geotechnical Engineering • Previous Articles     Next Articles

Testing study of dynamic shear modulus and damping ratio of seabed sediment

YIN Song1, ZHANG Xian-wei1, KONG Ling-wei1, Hossain Md Sayem1, 2   

  1. 1.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Department of Geological Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
  • Received:2015-03-06 Online:2015-07-11 Published:2018-06-14

Abstract: Dynamic shear modulus and damping ratio are two important parameters for seismic safety assessment of engineering site and earthquake response analysis of foundation. In order to evaluate the dynamics of seabed sediment of the selected area, the 10.3-84.2 m depth range of mucky silty clay, silt and fine sand are analyzed by using resonant column tests. The double logarithmic model has been built for the increasing trend of maximum shear modulus with overburden pressure. The research suggests that the existing standard values of shear modulus ratio and damping ratio are not suitable for seabed sediment, even the previous research results are just applied to a certain degree of strain range and natural stress state. Martin-Davidenkov model and the empirical relationship between damping ratio and shear strain has been used to build the variation law of shear modulus ratio and damping ratio with shear strain; and the dynamic shear modulus ratio and damping ratio of 5×10-6-10-3 strain range are used as recommended values. The study results may provide technical reference for marine engineering design, construction and seismic analysis.

Key words: seabed sediment, resonant column test, dynamic shear modulus, damping ratio

CLC Number: 

  • TU 443
[1] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[2] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[3] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[4] YANG Wen-bao, WU Qi, CHEN Guo-xing, . Dynamic shear modulus prediction method of undisturbed soil in the estuary of the Yangtze River [J]. Rock and Soil Mechanics, 2019, 40(10): 3889-3896.
[5] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[6] ZHANG Wei, LI Ya, ZHOU Song-wang, JIANG Zheng-bo, WU Fei, LIANG Wen-zhou,. Experimental research on cyclic behaviors of clay in the northern region of South China Sea [J]. , 2018, 39(7): 2413-2423.
[7] KONG Gang-qiang, LI Hui, WANG Zhong-tao , WEN Lei,. Comparison of dynamic properties between transparent sand and natural sand [J]. , 2018, 39(6): 1935-1940.
[8] LIU Fei-yu, SHI Jing, WANG Jun, CAI Yuan-qiang,. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand [J]. , 2018, 39(6): 1991-1998.
[9] WU Meng-tao, LIU Fang-cheng, CHEN Ju-long, CHEN Lu. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains [J]. , 2018, 39(3): 803-814.
[10] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
[11] HE Ming-ming, LI Ning, CHEN Yun-sheng, ZHU Cai-hui. Damping ratio and damping coefficient of rock under different cyclic loading conditions [J]. , 2017, 38(9): 2531-2538.
[12] LIU Jie, LEI Lan, WANG Rui-hong, WANG Fei, WANG Lian, XIAO Lei. Dynamic characteristics of sandstone under low-stress level conditions in freezing-thawing cycles [J]. , 2017, 38(9): 2539-2550.
[13] CHEN Le-qiu, ZHANG Jia-sheng, CHEN Jun-hua, CHEN Ji-guang,. Testing of static and dynamic strength properties of cement-improved argillaceous-slate coarse-grained soil [J]. , 2017, 38(7): 1903-1910.
[14] DENG Hua-feng, HU Yu, LI Jian-lin, WANG Zhe, ZHANG Xiao-jing, ZHANG Heng-bin. Effects of frequency and amplitude of cyclic loading on the dynamic characteristics of sandstone [J]. , 2017, 38(12): 3402-3409.
[15] DING Zu-de, HUANG Juan, YUAN Tie-ying, PENG Li-min, WANG Zhi-liang,. Experimental study of dynamic shear modulus and damping ratio of peaty soil in Kunming [J]. , 2017, 38(12): 3627-3634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[4] ZHOU Yang, ZHOU Guo-qing. Semi-analytical solution for temperature field of one-dimensional soil freezing problem[J]. , 2011, 32(S1): 309 -0313 .
[5] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .
[6] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[7] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .
[8] ZHOU Jia-wu, LIU Yuan-xue, LU Xin, ZHENG Ying-ren. Existence and decoupling for flow potential of geomaterials[J]. , 2012, 33(2): 375 -381 .
[9] ZHANG Bo , LI Shu-cai , YANG Xue-ying , ZHANG Dun-fu , . Uniaxial compression tests on mechanical properties of rock mass similar material with cross-cracks[J]. , 2012, 33(12): 3674 -3679 .
[10] YIN Shun-de, FENG Xia-ting, ZHOU Hui, ZHAO Hong-bo, LI Shao-jun . Study on GA-NN model for forecasting the displacement of landslides affected by rainfall[J]. , 2003, 24(6): 1038 -1041 .