›› 2015, Vol. 36 ›› Issue (S2): 639-647.doi: 10.16285/j.rsm.2015.S2.091

• Numerical Analysis • Previous Articles     Next Articles

Distinct element simulations of exploitation of methane hydrate bearing sediments with different methods

JIANG Ming-jing1, 2, FU Chang1, 2, HE Jie1, 2, SHEN Zhi-fu1, 2, ZHU Fang-yuan1, 2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. State key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; 3. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2014-05-08 Online:2015-08-31 Published:2018-06-14

Abstract: Methane hydrate bearing sediments(MHBS) are usually found undersea, which is generally categorized into different types, i.e. bond, pore-filling and so on. The mechanical properties of MHBS will be deteriorated as methane hydrate (MH) dissociates and many marine accidents will be caused; thus a lot of attention has been attracted in investigating MHBS properties changes during exploitation. A newly proposed 2D temperature-water pressure-mechanical bond model is implemented into PFC2D, the commercial software of the distinct element method (DEM), to simulate the dissociation of MH by thermal recovery and depressurization using soil in good exhaust and drainage conditions. By comparison with laboratory test results, it is validated that the newly proposed model is applicable to simulate the mechanical behavior of MHBS. At the same time, the micromechanical properties are also analyzed. With temperature increasing during thermal exploitation, the anisotropic degree of total contact distribution increases; the amount of bond contact, whose principal direction is horizontal all the time, decreases and the amount of unbonded contact, whose principal direction is vertical all the time, increases; the value of averaged pure rotation rate (APR) and its concentration degree increases all the time. With back (water) pressure decreasing during exploitation by depressurization, the total contact distribution changes from isotropic to anisotropic with a vertical principal direction, and the value of APR is small and uniformly distributed. After the recovery of back water pressure, the sample is damaged further, and the anisotropic degree of total contact distribution increases. Besides, the value of APR increases and the concentration degree of positive and negative value increases.

Key words: methane hydrate bearing sediment(MHBS), methane hydrate, temperature, back water pressure, macro and micromechanical property

CLC Number: 

  • TU 411
[1] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[2] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[3] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[4] LIU Wei-jun, ZHANG Jin-xun, SHAN Ren-liang, YANG Hao, LIANG Chen, . Experiments on temperature field of multi-row-pipe partial horizontal freezing body in Beijing sand-gravel stratum under seepage [J]. Rock and Soil Mechanics, 2019, 40(9): 3425-3434.
[5] FANG Jin-cheng, KONG Gang-qiang, CHEN Bin, CHE Ping, PENG Huai-feng, LÜ Zhi-xiang, . Field test on thermo-mechanical properties of pile group influenced by concrete hydration [J]. Rock and Soil Mechanics, 2019, 40(8): 2997-3003.
[6] YIN Li-yang, TANG Chao-sheng, XIE Yue-han, LÜ Chao, JIANG Ning-jun, SHI Bin, . Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546.
[7] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
[8] YANG Qi-lai, XIONG Yong-lin, ZHANG Sheng, LIU Gan-bin, ZHENG Rong-yue, ZHANG Feng, . Elastoplastic constitutive model for soft rock considering temperature effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906.
[9] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[10] TAN Yun-zhi, LI Hui, WANG Pei-rong, PENG Fan, FANG Yan-fen, . Hydro-mechanical performances of bentonite respond to heat-treated history [J]. Rock and Soil Mechanics, 2019, 40(2): 489-496.
[11] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[12] LI Chun-hong, KONG Gang-qiang, ZHANG Xin-rui, LIU Han-long, XU Xiao-liang, XU Jun-kui, . Development and verification of temperature-controlled pile-soil interface triaxial shear test system [J]. Rock and Soil Mechanics, 2019, 40(12): 4955-4962.
[13] RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, REN Wei-guang, WANG Zi-hui, SU Teng, . Study on coal permeability model in front of working face under the influence of mining disturbance and temperature coupling [J]. Rock and Soil Mechanics, 2019, 40(11): 4289-4298.
[14] SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Comparative study of microbially induced carbonate precipitation under low temperature conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 224-230.
[15] ZENG Yan-jin, RONG Guan, PENG Jun, SHA Song, . Experimental study of crack propagation of marble after high temperature cycling [J]. , 2018, 39(S1): 220-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .