›› 2016, Vol. 37 ›› Issue (3): 883-892.doi: 10.16285/j.rsm.2016.03.034

• Numerical Analysis • Previous Articles     Next Articles

Study of calculation equation of TBM disc cutter optimal spacing

TAN Qing1, 3, YI Nian-en1, 2, XIA Yi-min1, 2, ZHU Yi4, ZHANG Xu-hui1, 2, LING Nai-kuang1, 2   

  1. 1. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, China; 2. School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China; 3. Light Alloy Institute, Central South University, Changsha, Hunan 410083, China; 4. School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
  • Received:2015-01-23 Online:2016-03-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (2013CB035401), the National Natural Science Foundation of China (51274252) and the National High Technology Research and Development Program of China (2012AA041801).

Abstract: Based on tensile and shear failure mechanisms of rock breakage, a synthetic failure hypothesis has been proposed. With the establishment of the non-collaborative and collaborative cutting volume model, a theoretical model is deduced for the specific energy of tunnel boring machine (TBM) cutters working in the collaborative cutting mode. The relationship between the crack length and penetration is established by a discrete element model (DEM). A theoretical formula of optimal cutter spacing is then derived by the fitting method. Additionally, indentation experiments are conducted the cement simulation material as cutting objects using the TBM rotary cutting test platform. The relationship between the hob penetration and the crack length of the rock is obtained, and then the simulation results are verified by experimental results. The broken-rock volume is counted through 12 cutting experiments with different penetrations and spacings between cutters. Then the specific energy consumption fitting curve is obtained, which verifies the conclusion of optimal cutting spacing equation. The research results show that the characteristics of rock properties and the structure of the hob are comprehensively considered in the optimal cutter-spacing calculation formula of the full-face rock TBM, which potentially has wide applications. When the cutting spacing is greater than the collaborative spacing, the shear failure mechanism plays a dominant role in rock-breaking process. However, when the cutting spacing is less than the twice lateral crack length, the tensile failure mechanism has more significant effects on rock breakage. As the penetration increases, the optimal spacing increases while the optimal S/P decreases.

Key words: tunnel boring machine (TBM), disc cutter, crack propagation, specific energy consumption, optimal cutting spacing, particle discrete element

CLC Number: 

  • TU 45

[1] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[2] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[3] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[4] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[5] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
[6] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[7] WANG Hai-jun, YU Shu-yang, REN Ran, TANG Lei, LI Xin-yun, JIA Yu, . Study on failure of brittle solids with circular hole and internal crack based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(6): 2200-2212.
[8] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[9] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
[10] LI Zheng, GUO De-ping, ZHOU Xiao-ping, WANG Yun-teng, . Numerical simulation of crack propagation and coalescence using peridynamics [J]. Rock and Soil Mechanics, 2019, 40(12): 4711-4721.
[11] ZHANG Ke, WANG Hai-jun, REN Ran, TANG Lei, YU Shu-yang, LIU Xin-na, GU Hao, . Fracture characteristics of sphere with 45ºdouble embedded cracks based on 3D-ILC [J]. Rock and Soil Mechanics, 2019, 40(12): 4731-4739.
[12] LI Jing, KONG Xiang-chao, SONG Ming-shui, WANG Yong, WANG Hao, LIU Xu-liang, . Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation [J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
[13] MA Peng-fei, LI Shu-chen, ZHOU Hui-ying, ZHAO Shi-sen. Simulations of crack propagation in rock-like materials using modified peridynamic method [J]. Rock and Soil Mechanics, 2019, 40(10): 4111-4119.
[14] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[15] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua,. Study of three-dimensional crack propagation based on numerical manifold method [J]. , 2018, 39(S1): 488-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!