›› 2016, Vol. 37 ›› Issue (4): 1049-1060.doi: 10.16285/j.rsm.2016.04.018

• Geotechnical Engineering • Previous Articles     Next Articles

Mechanism research on artificial slope cutting-induced loess landslide

CAO Chun-shan1, 2,WU Shu-ren2,PAN Mao1,LIANG Chang-yu2   

  1. 1. School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. Institute of Geomechanics,Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2015-12-22 Online:2016-04-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Supporting Program of the“Twelve Five-year Plan”for Sci & Tech Research of China( 2012BAK10B02).

Abstract: Along with the acceleration of urbanization process, a large number of engineering landslides are induced by artificial slope cutting in loess region. Feifengshan landslide has been selected as a typical case in order to study the mechanism of typical engineering landslide. Detailed field investigation has been done, meanwhile, in-situ water penetration test and soil water characteristic curve (SWCC) test on undisturbed loess and paleosol have been conducted in this study. The experimental results show that: The permeability coefficient of loess can reach medium grade about 10-4 cm/s, if loess has structural problems, such as small holes, cracks, and so on. The air entry value of paleosol is 11.5 kPa obtained by SWCC tests , which is higher than that of loess (9.0 kPa); at the same time, curve also indicates that the evolutions of strength and deformation of paleosol and loess will differentiate dry-wet cycle. With the increase of suction, the growth rate of shear strength of paleosol is lower than that of loess during drying phase, and the elastic volume shrinkage rate of paleosol, caused by compressing, is also lower than that of loess in the same process. Paleosol will have bigger expansion deformation than loess during wetting phase, because the clay content of paleosol is higher. On the basis of experimental results analysis and field investigation, it is founded that artificial slope cutting is the most important factor inducing Feifengshan landslide, which triggers a series of physical and chemical chain reactions, especially reinforces coupling effect between soil and water and accelerates the occurrence of landslide. Finally, we put forward the failure mode of Feifengshan landslide characterized by two-way development of sliding surface and typical progressive destruction, simultaneously having part of geological features of slumping.

Key words: loess landslide, artificial slope cutting, in-situ permeation test, soil water characteristic curve (SWCC), suction

CLC Number: 

  • TU 42

[1] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
[2] CHEN Wen-wu, JIA Quan-quan, TONG Yan-mei, . Measurement and curve fitting for soil-waterer characteristic curve of mural plaster at Mogao Grottoes [J]. Rock and Soil Mechanics, 2020, 41(5): 1483-1491.
[3] SUN Yin-lei, TANG Lian-sheng, LIU Jie, . Advances in research on microstructure and intergranular suction of unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(4): 1095-1122.
[4] LI Xiao-xuan, LI Tao, LI Jian, ZHANG Tao. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(4): 1153-1160.
[5] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
[6] WANG Li-ye, ZHOU Feng-xi, QIN Hu, . Fractional creep model and experimental study of saturated saline soil [J]. Rock and Soil Mechanics, 2020, 41(2): 543-551.
[7] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[8] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[9] WANG Huan, CHEN Qun, WANG Hong-xin, ZHANG Wen-ju, . Triaxial tests on fly ash with different compaction and matric suction [J]. Rock and Soil Mechanics, 2019, 40(S1): 224-230.
[10] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[11] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[12] TAN Yun-zhi, HU Yan, DENG Yong-feng, CAO Ling, ZUO Qing-jun, MING Hua-jun, . Behavior and mechanism of laterite shrinkage inhibition with lime and meta-kaolin mixture [J]. Rock and Soil Mechanics, 2019, 40(11): 4213-4219.
[13] BAO Xiao-hua, LIAO Zhi-guang, XU Chang-jie, PANG Xiao-chao, XIE Xiong-yao, CUI Hong-zhi, . Model test study of the failure of silty sand slope under different seepage boundary conditions [J]. Rock and Soil Mechanics, 2019, 40(10): 3789-3796.
[14] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[15] CHENG Xing-lei, WANG Jian-hua, WANG Zhe-xue,. Model experiment on cyclic instability process of suction anchors in soft clays [J]. , 2018, 39(9): 3285-3293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!