›› 2016, Vol. 37 ›› Issue (6): 1603-1612.doi: 10.16285/j.rsm.2016.06.010

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of bedding plane direction on acoustic emission characteristics of shale in Brazilian tests

HOU Peng1, 2, GAO Feng1, 2, YANG Yu-gui1, 2, ZHANG Zhi-zhen2, GAO Ya-nan2, ZHANG Xiang-xiang2, ZHANG Ji2   

  1. 1. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2014-10-09 Online:2016-06-13 Published:2018-06-09
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2011CB201205), the National Natural Science Foundation of China (51204161, 51404250), the Natural Science Foundation of Jiangsu Province (BK20140189) and the China Postdoctoral Science Foundation (2014M550315, 2014M550316).

Abstract: Brazilian tests are conducted on shales with different bedding angles, and a high speed camera and an acoustic emission (AE) system are used to investigate the effect of stratification on shale mechanical properties, crack propagation and AE characteristics. The results indicate that: (1) Brazilian split destruction process can be divided into three stages: compaction stage, elastic stage and destruction stage. (2) The anisotropic characteristics of tensile strength, splitting modulus and deformation at the stress peak point are highly distinct. The most obvious effect of stratification is found at the angle of 30°, whereas the smallest effect is found at the angle of 90°. (3) For samples with angles of 0° and 15°, the failure surfaces are normally along the direction of bedding plane. At the angle of 30°, the failure surface intersects bedding planes and coincides with the loading baseline surface. In contrast, fracture surfaces deviate from the loading baseline surface with varying degrees and turn out to be curved surface for samples with angles of 45°, 60°, 75° and 90°. (4) 30°and 45° are transformation angles of failure mechanisms. At 30°, tension failure occurs along bedding converts to cross-cut bedding plane failure along the loading baseline, while cross-cut bedding plane failure happens along the loading baseline converts to cross-cut bedding planes failure with varying degrees of shear slip at 45°. (5) AE activities and energy releases demonstrate obviously with increasing bedding angles caused by the bedding plane, which results in the anisotropy of failure mechanism. Moreover, there exists a good linear relationship between the peak value of AE energy rate and tensile strength, which indicates that the peak value of AE energy rate can reflect the variation of tensile strength well.

Key words: shale, Brazilian splitting, acoustic emission, anisotropy, crack propagation

CLC Number: 

  • TE 371

[1] WANG Chuang-ye, CHANG Xin-ke, LIU Yi-Lin, GUO Wen-bin, . Spectrum evolution characteristics of acoustic emission during the rupture process of marble under uniaxial compression condition [J]. Rock and Soil Mechanics, 2020, 41(S1): 51-62.
[2] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[3] ZHANG Xiao-jun, LI Xiao-cheng, LIU Guo-lei, LI Bao-yu, . Experimental study on the effect of local risk reduction of pressure relief hole for splitting [J]. Rock and Soil Mechanics, 2020, 41(S1): 171-178.
[4] BIAN Kang, CHEN Yan-an, LIU Jian, CUI De-shan, LI Yi-ran, LIANG Wen-di, HAN Xiao. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method [J]. Rock and Soil Mechanics, 2020, 41(S1): 355-367.
[5] GAN Yi-xiong, WU Shun-chuan, REN Yi, ZHANG Guang, . Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(7): 2324-2332.
[6] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[7] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[8] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[9] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[10] HONG Chen-jie, HUANG Man, XIA Cai-chu, LUO Zhan-you, DU Shi-gui, . Study of size effect on the anisotropic variation coefficient of rock joints [J]. Rock and Soil Mechanics, 2020, 41(6): 2098-2109.
[11] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[12] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[13] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
[14] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[15] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!