›› 2016, Vol. 37 ›› Issue (7): 1825-1831.doi: 10.16285/j.rsm.2016.07.001

• Fundamental Theroy and Experimental Research •     Next Articles

Model tests of tensile membrane effect of geosynthetic-reinforced piled embankments

XU Chao1, 2,LIN Xiao1,SHEN Pan-pan1   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2015-10-29 Online:2016-07-11 Published:2018-06-09
  • Supported by:

    This research was supported by the Natural Science Foundation of China (41272293) and the Transportation Department of Yunnan Province (2015(A)12).

Abstract: Calculation of the deflection and tension of the membrane elements in geosynthetic-reinforced and piled (GRP) embankments is a controversial issue yet to be resolved. However, little attention was paid to the evaluation of the strain distribution in geosynthetic reinforcements and the three-dimensional displacements of the geosynthetic materials. Physical model tests of membrane effect of geosynthetic reinforcement in GRP embankments with different pile spaces were carried out using a self-designed equipment. In the model tests, the geosynthetic reinforcement was loaded by applying air pressure, the strains in geosynthetic reinforcement were monitored in different locations. It is shown that: the strain and tension of geosynthetic reinforcements are unevenly distributed, and the three-dimensional deformation of the geosynthetic above square-distributed piles can be represented by a parabolic face and a parabolic cylinder; the applied loads are carried mainly by 4 tensile strips between two adjacent piles, and the calculated tension in geosynthetic reinforcements is much larger than the experimental results. Based on the modeling test results, a new calculation method for the tension in geosynthetic reinforcements is tentatively presented in this paper.

Key words: geosynthetic-reinforced and piled (GRP) embankment, reinforcement, tensile membrane effect, model test

CLC Number: 

  • TU 472.3+4

[1] CHU Feng, ZHANG Hong-gang, SHAO Sheng-jun, DENG Guo-hua, . Experimental study on mechanical deformation and corrosion resistance characteristics of loess reinforced with synthetic waste cloth fiber yarn [J]. Rock and Soil Mechanics, 2020, 41(S1): 394-403.
[2] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[3] DUAN Jun-yi, YANG Guo-lin, HU Min, QIU Ming-ming, YU Yun, . Experimental study on deformation characteristics of reinforced soil cushion subjected to loading and unloading [J]. Rock and Soil Mechanics, 2020, 41(7): 2333-2341.
[4] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[5] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[6] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[7] ZOU Xin-jun, CAO Xiong, ZHOU Chang-lin, . Model study on the bearing behavior of V-H combined loaded pile in sand considering the current effects [J]. Rock and Soil Mechanics, 2020, 41(6): 1855-1864.
[8] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[9] NING Yi-bing, TANG Hui-ming, ZHANG Bo-cheng, SHEN Pei-wu, ZHANG Guang-cheng, XIA Ding, . Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests [J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020.
[10] RONG Chi, CHEN Wei-zhong, YUAN Jing-qiang, ZHANG Zheng, ZHANG Yi, ZHANG Qing-yan, LIU Qi, . Study on new sodium silicate-ester grouting material and its properties of grouted-sand [J]. Rock and Soil Mechanics, 2020, 41(6): 2034-2042.
[11] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[12] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[13] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[14] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[15] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!