›› 2016, Vol. 37 ›› Issue (8): 2159-2164.doi: 10.16285/j.rsm.2016.08.005

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A method for estimating equivalent elastic moduli of fractured rock masses based on elastic strain energy

YANG Jian-ping1, CHEN Wei-zhong1, 2, YANG Dian-sen1, TIAN Hong-ming1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, Shandong 250061, China
  • Received:2014-09-26 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2013CB03600) and the National Natural Science Foundation of China (51274189).

Abstract: Based on the formulae of normal displacement and shear displacement of crack faces from linear elastic fracture mechanics, this paper aims to investigate the stored excessive elastic strain energy during the fracturing process of a rock with a single crack by applying external loading. The normal stiffness and shear stiffness of the crack are assumed be constant rather than traction-free. Two deformation models, i.e. the non-uniform deformation mode and the uniform deformation mode, are applied to calculate normal and shear displacements. In addition, based on equivalence of elastic strain energy, the analytical expressions of equivalent Young’s modulus and shear modulus of 2D fractured rock mass containing regularly distributed non-persistent cracks are studied. The comparison between the analytical expression and a closed-form solution derived by Amadei and Goodman (1981) shows that the uniform deformation mode provides the same result. The comparison of normally distributed cracks between the analytical expressions and FEM shows that the non-uniform deformation mode considering crack interactions obviously underestimates the elastic moduli, while the uniform deformation mode predicts directional moduli within 10% deviation of FEM results. The obtained analytical expression can be used as one of effective methods to estimate the equivalent elastic modulus of rock mass under specific conditions.

Key words: fractured rock mass, equivalent elastic moduli, analytical method, elastic strain energy

CLC Number: 

  • TU 452

[1] LIU Dong-dong, WEI Li-xin, XU Guo-yuan, XIANG Yan-yong, . Simulation of seepage and heat transfer in 3D fractured rock mass based on fracture continuum method [J]. Rock and Soil Mechanics, 2023, 44(7): 2143-2150.
[2] JIA Peng, WANG Xiao-shuai, WANG De-chao. Study on the freeze-thaw deformation characteristics of saturated fractured rocks [J]. Rock and Soil Mechanics, 2023, 44(2): 345-354.
[3] JIANG Zhong-ming, XIAO Zhe-zhen, TANG Dong, HE Guo-fu, XU Wei, . Prediction of water inflow in water-sealed oil storage caverns based on fracture seepage effect [J]. Rock and Soil Mechanics, 2022, 43(4): 1041-1047.
[4] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[5] LIANG Ke, CHEN Guo-xing, LIU Kang, WANG Yan-zhen, . Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading [J]. Rock and Soil Mechanics, 2020, 41(2): 601-611.
[6] ZHANG Jin-peng, LIU Li-min, LIU Chuan-xiao, SUN Dong-ling, SHAO Jun, LI Yang, . Research on mechanism of bolt-grouting reinforcement for deep fractured rock mass based on prestressed anchor and self-stress grouting [J]. Rock and Soil Mechanics, 2020, 41(11): 3651-3662.
[7] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[8] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[9] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[10] LI Wei, WANG Zhe-chao, BI Li-ping, LIU Jie, . Representative elementary volume size for permeable property and equivalent permeability of fractured rock mass in radial flow configuration [J]. Rock and Soil Mechanics, 2019, 40(2): 720-727.
[11] LIU Yan-zhang, GUO Yun-lin , HUANG Shi-bing , CAI Yuan-tian , LI Kai-bing , WANG Liu-bao , LI Wei , . Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018, 39(S2): 62-71.
[12] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[13] XIA Cai-chu, Lü Zhi-tao, HUANG Ji-hui, LI Qiang, . Semi-analytical method of maximum frozen depth calculation in cold region tunnel [J]. , 2018, 39(6): 2145-2154.
[14] HUANG Shi-bing, LIU Quan-sheng, CHENG Ai-ping, LIU Yan-zhang, . A coupled hydro-thermal model of fractured rock mass under low temperature and its numerical analysis [J]. , 2018, 39(2): 735-744.
[15] WANG Shao-jie, LÜ Ai-zhong, ZHANG Xiao-li. Analytical solution for the non-circular hydraulic tunnel buried in the orthotropic rock mass [J]. Rock and Soil Mechanics, 2018, 39(12): 4437-4447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .