›› 2016, Vol. 37 ›› Issue (8): 2417-2425.doi: 10.16285/j.rsm.2016.08.039

• Numerical Analysis • Previous Articles     Next Articles

Liquefaction-induced lateral spreading analysis in gently sloping ground from earthquakes based on CG model

ZHOU Ge1, 2, 3, LIU Han-long4, IAI Susumu3, CHEN Yu-min1, 2, TOBITA Tetsuo3   

  1. 1. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 3. Disaster Prevention Research Institute, Kyoto University, Kyoto 611–0011, Japan; 4. College of Civil Engineering, Chongqing University, Chongqing 400045 China
  • Received:2014-09-09 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(51379067), the 111 Project(B13024) and the Fundamental Research Funds for the Central Universities(2015B17314).

Abstract: Lateral spreading due to liquefaction of sandy soils is a significant cause of damage to the important engineering facilities and buildings in earthquakes. FLIP ROSE is a two-dimensional finite element analysis program for seismic liquefaction problems. A strain space multiple mechanism model (cocktail glass model) is implemented in the program for analysis of the granular material. A two dimensional finite element model is proposed to predict and analyze liquefaction-induced lateral spreading in gently sloping ground under the seismic loading. This numerical simulation model is verified using the excess pore water pressure, the lateral acceleration, the arias intensity and the lateral displacement time histories recorded in three sets of free-field lateral spreading centrifuge tests. The computed response shows good agreement with the centrifuge test measurements. The final lateral displacements in the gently sloping ground with the different gradients are predicted by this simulation model after sandy liquefaction. It shows that the gradient of gently sloping ground plays a more and more important role in the liquefaction-induced lateral spreading as the depth increases.

Key words: seismic liquefaction, gently sloping ground, cocktail glass (CG) model, gradient, lateral spreading

CLC Number: 

  • TU 475

[1] YU Jun, LI Dong-kai, HE Zhen, ZHANG Zhi-zhong. Analytical solution of anisotropic seepage in dam foundation with anti-seepage walls at both ends [J]. Rock and Soil Mechanics, 2023, 44(8): 2381-2388.
[2] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[3] JIN Jie-fang, ZHANG Ya-chen, LIU Kang, ZHANG Rui, LI Yun-hao, . Effect of gradient stress on stress wave propagation characteristics of red sandstone [J]. Rock and Soil Mechanics, 2023, 44(4): 952-964.
[4] HUANG Juan, HE Zhen, YU Jun, YANG Xin-xin. Analytical solution for steady seepage around circular cofferdam in soil layer with anisotropic permeability [J]. Rock and Soil Mechanics, 2023, 44(4): 1035-1043.
[5] ZHOU Hang, WU Han, ZENG Shao-hua, . Closed-form solution for cavity expansion in sand based on strain gradient plasticity [J]. Rock and Soil Mechanics, 2023, 44(3): 757-770.
[6] DU Chun-xue, XU Chao, YANG Yang, PENG Shan-tao, ZHANG Peng-cheng, . Experimental study on filter characteristics of nonwoven geotextile filtering clay [J]. Rock and Soil Mechanics, 2022, 43(S2): 275-281.
[7] XIAO Yao, DENG Hua-feng, LI Jian-lin, CHENG Lei, ZHU Wen-xi. Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment [J]. Rock and Soil Mechanics, 2022, 43(2): 395-404.
[8] CHEN Yu, LI Chuan-xun, FENG Cui-xia, . Analytical solution for one-dimensional consolidation of soft soils under a partially permeable boundary condition and a time-dependent loading considering the threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2021, 42(11): 3008-3016.
[9] LI Wei-yi, QIAN Jian-gu, YIN Zhen-yu, ZHOU Chuang, . Simulation of seepage erosion in gap graded sand soil using CFD-DEM [J]. Rock and Soil Mechanics, 2021, 42(11): 3191-3201.
[10] LIN Man-qing, ZHANG Lan, LIU Xi-qi, XIA Yuan-you, ZHANG Dian-ji, PENG Ya-li, . Microscopic analysis of rockburst failure on specimens under gradient stress [J]. Rock and Soil Mechanics, 2020, 41(9): 2984-2992.
[11] WANG Ming-nian, JIANG Yong-tao, YU Li, DONG Yu-cang, DUAN Ru-yu, . Analytical solution of startup critical hydraulic gradient of fine particles migration in sandy soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2515-2524.
[12] WANG Li-an, ZHAO Jian-chang, HOU Xiao-qiang, LIU Sheng-wei, WANG Zuo-wei. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790-1798.
[13] TIAN Da-lang, XIE Qiang, NING Yue, FU Xiang, ZHANG Jian-hua, . Experimental investigation on seepage deformation of gap-graded sand-gravel soils [J]. Rock and Soil Mechanics, 2020, 41(11): 3663-3670.
[14] JIN Dan-dan, WANG Su, LI Chuan-xun. Analysis of consolidation of natural heterogeneous soils with a threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2019, 40(4): 1433-1440.
[15] WU Meng-xi, GAO Gui-yun, YANG Jia-xiu, ZHAN Zheng-gang, . A method of predicting critical gradient for piping of sand and gravel soils [J]. Rock and Soil Mechanics, 2019, 40(3): 861-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .