›› 2016, Vol. 37 ›› Issue (9): 2484-2488.doi: 10.16285/j.rsm.2016.09.007

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A method for calculating ultimate pull-out capacity of rock bolt based on modified Mohr-Coulomb failure criterion

HE Jian-qing1, 2, XIAO Lan2, ZHANG Wen-yong2, GAO Wen-hua2   

  1. 1. Hunan Provincial Key Laboratory of Hydropower Development Key Technology, Changsha, Hunan 410014, China; 2. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2015-09-30 Online:2016-09-12 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41272324) and the Hunan Provincial Key Laboratory Program of Hydropower Development Key Technology (PKLHD201309).

Abstract: The rock bolt foundation is a special type of wind turbine foundation. It shows a good pull-out performance, and can well demonstrate mechanical properties of rock mass in its original state. Recent studies indicate that the modified Mohr-Coulomb (M-C) failure criterion with a small but not zero tension cut-off is more applicable for describing failure characteristics of rock masses. According to the modified M-C failure criterion, an expression is derived with the energy dissipation rate per unit area. Furthermore, the planar translational failure mechanism of rock wedge is put forward, which is based on the upper bound theorem for the limit analysis of soil plasticity mechanics. A virtual power equation is deduced, when the work rate of external loads to self-weight of rock wedge equals to the rate of energy dissipation along the sliding surface of rock wedge. Then a formula is developed for calculating ultimate pull-out capacity of rock bolt. The prototype test results show that the calculated values by this formula are in good agreement with the measured values, which indicates the formula with certain reliability can meet the requirements of engineering application.

Key words: a small but not zero tension cut-off, Mohr-Coulomb failure criterion, limit analysis, rock bolt, ultimate pull-out capacity

CLC Number: 

  • TU 452

[1] LIU Ke-qi, DING Wan-tao, CHEN Rui, HOU Ming-lei. Construction of three-dimensional failure model of shield tunnel face and calculation of the limit supporting force [J]. Rock and Soil Mechanics, 2020, 41(7): 2293-2303.
[2] SUN Lai-bin, XIAO Shi-guo, . Evaluation method for elastic foundation coefficient of finite downslope soil against loading segment of stabilizing piles [J]. Rock and Soil Mechanics, 2020, 41(1): 278-284.
[3] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[4] YUAN Wei, LIU Shang-ge, NIE Qing-ke, WANG Wei, . An approach for determining the critical thickness of the karst cave roof at the bottom of socketed pile based on punch failure mode [J]. Rock and Soil Mechanics, 2019, 40(7): 2789-2798.
[5] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[6] WU Qiu-hong, ZHAO Fu-jun, WANG Shi-ming, ZHOU Zhi-hua, WANG Bin, LI Yu, . Mechanical response characteristics of full grouted rock bolts subjected to dynamic loading [J]. Rock and Soil Mechanics, 2019, 40(3): 942-950.
[7] WANG Zhen, CAO Lan-zhu, WANG Dong, . Evaluation on upper limit of heterogeneous slope stability [J]. Rock and Soil Mechanics, 2019, 40(2): 737-742.
[8] FENG Ling-yun, ZHU Bin, DAI Jia-lin, KONG De-qiong, . Modelling lateral pipe-soil interaction on soft clay using large displacement sequential limit analysis [J]. Rock and Soil Mechanics, 2019, 40(12): 4907-4915.
[9] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[10] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
[11] GUO Hong-xian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay [J]. Rock and Soil Mechanics, 2018, 39(S2): 398-404.
[12] XU Peng, JIANG Guan-lu, QIU Jun-jie, LIN Zhan-zhan, WANG Zhi-meng,. Limit analysis on yield acceleration and failure model of reinforced soil retaining walls using two-wedge method [J]. , 2018, 39(8): 2765-2770.
[13] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[14] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Study on hydraulic fracture of gravity dam using the numerical manifold method [J]. , 2018, 39(8): 3055-3060.
[15] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!