›› 2018, Vol. 39 ›› Issue (9): 3270-3276.doi: 10.16285/j.rsm.2016.2609

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

True triaxial test on clay mixed with gravel with stress increment loading from minor principal stress direction

ZHANG Kun-yong1,2,3, LI Wei1,3, Charkley Nai Frederick1,3, CHEN Shu1,3   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing, Jiangsu 210098, China; 3. Institute of Geotechnical Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2016-11-08 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41530637, 51578214) and the Fundamental Research Funds for the Central Universities(2015B17714).

Abstract: True triaxial tests on clay mixed with gravel were carried out under complex stress state to simulate the loading process of core wall elements under water storage process, and loading was applied from the minor principal stress direction. Under initial state, the major principal stress and the second principal stress were adjusted with constant minor principal stress; initial anisotropic stress state was reached to simulate the stress state of dam elements. The major principal stress and second principal stress were then kept constant. Minor principal stress increment was applied to simulate the stress path that core wall elements go through during the process of water storage. Test results show significant differences compared with the result of conventional triaxial tests and true triaxial tests loading from major principal stress direction. Under different initial stress conditions, the initial tangent modulus and initial Poisson’s ratio of the principal stress direction are very complex, and the stress - strain curve shows obvious anisotropy. In the process of core wall rockfill dam construction and the water storage process, the stress path experienced by the core wall unit is obviously different. The reasonable soil constitutive model should be used to describe the modulus and Poisson’s ratios caused by the different loading paths.

Key words: true triaxial test, minor principal stress, anisotropy, clay mixed with gravel, stress path

CLC Number: 

  • TU411

[1] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[2] HONG Chen-jie, HUANG Man, XIA Cai-chu, LUO Zhan-you, DU Shi-gui, . Study of size effect on the anisotropic variation coefficient of rock joints [J]. Rock and Soil Mechanics, 2020, 41(6): 2098-2109.
[3] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[4] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[5] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[6] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[7] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[8] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[9] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[10] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[11] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[12] LUO Dan-ni, SU Guo-shao, HE Bao-yu, . True triaxial test on rockburst of granites with different water saturations [J]. Rock and Soil Mechanics, 2019, 40(4): 1331-1340.
[13] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[14] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[15] ZHOU Jian, CAI Lu, LUO Ling-hui, YING Hong-wei, . Limit equilibrium analysis of anisotropic soft clay stability against excavation basal heave [J]. Rock and Soil Mechanics, 2019, 40(12): 4848-4856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!