›› 2018, Vol. 39 ›› Issue (9): 3313-3320.doi: 10.16285/j.rsm.2016.2956

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Elasto-plastic analysis of a deep circular tunnel based on tangential strain softening

WANG Feng-yun, QIAN De-ling   

  1. College of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • Received:2016-12-22 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Nature Science Foundation of China (51378168).

Abstract: To explore the strain-softening behavior of a deep circular tunnel, the strain softening coefficient is introduced to characterize the degree of strain softening. This coefficient is defined as the ratio of the tangential strain at the boundary of the softening-residual plastic zone to the tangential strain at the boundary of the elasto-softening zone. Then, the displacement equations of the softening plastic zone and the residual plastic zone are deduced. The displacement curves calculated by the deduced method are compared with those calculated by Lee’s method and Cui’s method to verify its accuracy. Finally, using example analysis, the difference of the plastic radius is obtained due to the difference of the selected mechanical model. In addition, the effect of the strain softening coefficient on the ratio of the softening plastic zone to the residual plastic zone and displacement is analyzed. The results show that the confining stress at the elasto-plastic boundary is not related to strain softening coefficient and support force, but the plastic radius is related to the support force. The strain softening coefficient has a direct influence on the ratio of the radius of the residual plastic zone to the radius of the plastic zone. With the increase of strain softening coefficient, the range of softening area increases, leading to the decrease of the residual plastic zone. The displacement surrounding tunnel wall is greatly affected by support force and deceased with the increase of support force.

Key words: rock masses, strain softening coefficient, plastic radius, displacement

CLC Number: 

  • TU 452

[1] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] WANG Li-an, ZHAO Jian-chang, YU Yun-yan, . Propagation characteristics of Rayleigh wave in non-homogeneous saturated foundation [J]. Rock and Soil Mechanics, 2020, 41(6): 1983-1990.
[4] HUANG Fu-yun, CHEN Han-lun, DONG Rui, SHAN Yu-lin. Experimental study of single pile-soil interaction under horizontal low-cycle reciprocating displacement [J]. Rock and Soil Mechanics, 2020, 41(5): 1625-1634.
[5] TIAN Shu-ping, GAO Meng, WANG Ying, CHEN Qing-sheng. Numerical analysis and field experiment on vibration isolation for Duxseal [J]. Rock and Soil Mechanics, 2020, 41(5): 1770-1780.
[6] SONG Yi-min, ZHANG Yue, XU Hai-liang, WANG Ya-fei, HE Zhi-jie. Study on creep-slip and stick-slip deformation evolution of rock based on non-uniform characteristics [J]. Rock and Soil Mechanics, 2020, 41(2): 363-371.
[7] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[8] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[9] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
[10] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[11] DENG Mao-lin, YI Qing-lin, HAN Bei, ZHOU Jian, LI Zhuo-jun, ZHANG Fu-ling, . Analysis of surface deformation law of Muyubao landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2019, 40(8): 3145-3152.
[12] XU Zi-gang, DU Xiu-li, XU Cheng-shun, HAN Run-bo, QIAO Lei. Research on generalized response displacement method for seismic analysis of underground structures with complex sections [J]. Rock and Soil Mechanics, 2019, 40(8): 3247-3254.
[13] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[14] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[15] ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study of the seismic response of the seafloor ground containing soft soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2456-2468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!