›› 2016, Vol. 37 ›› Issue (S1): 57-62.doi: 10.16285/j.rsm.2016.S1.007

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A creep constitutive model of rock considering initial damage and creep damage

WANG Qi-hu1, 2,YE Yi-cheng1, 2,LIU Yang-zhang1, 2,YAO Nan1, 2   

  1. 1. Hubei Provincial Engineering Technology Research Center of High Efficient Clean Utilization Shale Vanadium Resource, Wuhan, Hubei 430081, China; 2. School of Resources and Environmental Engineering , Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
  • Received:2014-09-23 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the "Twelfth the five-year" National Science and Technology Project Funding Support Plan (2011BAB05B03), the National Natural Science Foundation of China (51074115) and Hubei Province Science And Technology Support Plan (2014BCB033).

Abstract: Natural rock contained a large number of microcracks generated and accumulated in the long-term geological activity. In early loading stages or under a low stress level, rock would experience a fracture compression phase, in which rock showed out nonlinear instantaneous plastic deformation. Without considering rock instantaneous plastic deformation by fracture compression, the normal rock creep model reflected lower instantaneous deformation value than the real. Therefore, it is necessary to consider effect of initial damage on rock creep in process of constructing rock creep constitutive model. Considering different degrees of initial damage existing in the natural rock and new damage caused by crack extension under loading in the process of rock creep, the creep properties of rock with initial damage in different stress levels is overall described. With the increase of stress, rock creep would experience steady creep with instantaneous elastic deformation, steady creep with instantaneous elastoplastic deformation and accelerated creep. Based on the relationship between stress and normal deformation of the unclosed structural plane, concluded by BANDIS S C and BARTON N R through many tests, a mechanical component of fracture rock plastic deformation body is put forward to describe instantaneous plastic deformation in rock creep process. Considering the initial damage having effect on accelerated creep, an initial damage factor is introduced to Kachanov creep damage variable evolution equation, a damage variable evolution equation of the rock with initial damage is built. Furthermore, a creep damage body component is put forward to simulate accelerated creep of rock. The fracture rock plastic deformation body component and the creep damage body component are series connected to the generalized Kelvin model which can describe instantaneous elastic deformation and viscoelastic deformation of rock, to form a whole creep process constitutive model which could reflect instantaneous elastoplastic deformation, steady creep and accelerated creep of the rock with initial damage. The method of model parameters determination through a small amount of tests is put forward. At different stress levels, the theoretical curves can coincide with the creep test curves. The new rock creep model can simulate nonlinear increase of instantaneous deformation by stress level. Compared to accuracy of the accelerated creep simulation only by traditional Kachanov creep damage variable evolution equation, the accuracy of the new model has been improved after introducing the initial damage factor.

Key words: rock creep, initial damage, instantaneous plastic deformation, creep damage, accelerated creep, constitutive model

CLC Number: 

  • TU 452
[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] WANG Xiang-nan, HAO Qing-shuo, YU Jia-lin, YU Yu-zhen, LÜ He, . Three-dimensional simulation of the separation of dam panel based on extended finite element method [J]. Rock and Soil Mechanics, 2020, 41(S1): 329-336.
[3] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[4] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[5] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[6] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[7] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[8] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[9] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[10] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[11] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[12] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[13] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[14] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[15] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!