›› 2016, Vol. 37 ›› Issue (S1): 117-125.doi: 10.16285/j.rsm.2016.S1.015

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Soil disturbance caused by tunnel excavation and lining loading characteristics in underlying horizontal thin coal mined-out area

FU Ya-peng1, 2, YAO Zhi-gang2, FANG Yong2, CHEN Xian-guo3   

  1. 1. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an, Shaanxi 710043, China; 2. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Sichuan Road & Bridge Construction Company, Chengdu, Sichuan 610041, China
  • Received:2015-09-22 Online:2016-06-16 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51278422), the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2012BAG05B03) and the Sichuan Province Science Foundation for Youths (2012JQ0021).

Abstract: In order to study ground disturbance induced by tunnel construction and characteristics of lining structure under load in underlying horizontal thin coal mined-out area, numerical analysis software is used to simulate the vibration of ground stress from meso-level; meanwhile, indoor tests of similarity model is carried out to measure earth pressure acting on tunnel lining and structure internal force of secondary lining(axial force and bending moment) in the strata beneath thin seam mined-out area to analyze the influences of pitch on the earth pressure and internal forces of secondary lining under confining pressure. The test results demonstrate that the loosening zone of surrounding rock induced by tunnel excavation takes on O-shape in underlying horizontal thin coal mined-out area; and the particle contact force of the underlying wall rocks of the tunnel is less than that of the overlaying rock of the tunnel. The greater the convergence of tunnel inner perimeter, the greater the particle contact force of discontinuity region. The smaller the pitch, the larger the particle contact force discontinuity region, when the pitch is larger than 2.0D, the impact of underlying mined-out area to particle contact force fade away. The subgrade reaction is reduced by underlying mined-out area; the smaller the pitch, the higher the degree of reduction. Internal force of secondary lining is discrete distributed. As the weak part of main structure of tunnel, the first crack appeared in invert of secondary lining.

Key words: tunnel excavation, underlying mined-out area, PFC, soil disturbance, model test, loading characteristics

CLC Number: 

  • U 452

[1] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] ZOU Xin-jun, CAO Xiong, ZHOU Chang-lin, . Model study on the bearing behavior of V-H combined loaded pile in sand considering the current effects [J]. Rock and Soil Mechanics, 2020, 41(6): 1855-1864.
[4] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[5] NING Yi-bing, TANG Hui-ming, ZHANG Bo-cheng, SHEN Pei-wu, ZHANG Guang-cheng, XIA Ding, . Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests [J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020.
[6] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[7] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[8] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[9] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[10] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[11] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[12] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[13] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[14] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[15] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!