›› 2016, Vol. 37 ›› Issue (S1): 381-390.doi: 10.16285/j.rsm.2016.S1.050

• Geotechnical Engineering • Previous Articles     Next Articles

Research on effect of landfill gas generation on pore pressure below leachate level

JU Meng-meng,SHI Jian-yong   

  1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2015-06-18 Online:2016-06-16 Published:2018-06-09

Abstract: In order to study the effect of landfill gas on pore pressure below the leachate level in wet municipal solid waste landfill, a new model for predicting the time and depth dependent development pore pressures due to the formation of landfill gas is derived. Considering the specific flow conditions of pore gas below the leachate level, the model combines the Darcy law, the ideal gas law and the theory of dynamics of fluids in porous media. A finite difference solution is obtained for the liquid-gas migration problem, which is caused by the continuous formation of landfill gas within the wet waste. The calculation results show that the pore pressure below leachate level is mainly influenced by the additional pore pressure caused by the increasing of phreatic surface and the excess pore pressure due to the continuous formation of gas. The pore pressure varied over time during the gas generating period. At the beginning, a maximum gas pressure is identified because of gas eruption, and then, gas escaped from the surface leading to an immediate pressure reduction along with a significantly increased gas permeability; finally, the pore pressure is depended by gas-liquid convection. In the landfill, high gas yield rate, high leachate level and low permeability make waste to form high pore pressure. Drawdown of leachate level is found to be the most effective and workable emergency measure to reduce the pore pressure in wet landfill, which is caused by the continuous formation of landfill gas.

Key words: pore pressure, leachate level, landfill gas, moisture migration, landfill

CLC Number: 

  • TU 443
[1] YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, . Experimental study on moisture migration properties in unsaturated silty subgrade [J]. Rock and Soil Mechanics, 2020, 41(7): 2241-2251.
[2] LIU Jian-min, QIU Yue, GUO Ting-ting, SONG Wen-zhi, GU Chuan, . Comparative experimental study on static shear strength and postcyclic strength of saturated silty clay [J]. Rock and Soil Mechanics, 2020, 41(3): 773-780.
[3] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[4] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[5] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[6] CHEN Wei-zhong, LEI Jiang, YU Hong-dan, LI Fan-fan, MA Yong-shang, YAN Xian-yang, . Experiment on moisture migration in saturation process of clayey rock [J]. Rock and Soil Mechanics, 2019, 40(9): 3327-3334.
[7] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[8] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[9] ZHANG Qiang, LI Xiao-chun, ZHOU Ying-bo, SHI Lu, BAI Bing, . Shear behavior of the Triassic sandstone in Sichuan under high pore pressure of H2O/CO2 conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3028-3036.
[10] ZHANG Feng, CHEN Guo-xing, WU Qi, ZHOU Zheng-long. Experimental study on undrained behavior of saturated silt subject to wave loading [J]. Rock and Soil Mechanics, 2019, 40(7): 2695-2702.
[11] ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, XIONG Hao, ZHOU Zheng-long, . Experimental investigation on a new incremental pore pressure model characterized by shear-volume strain coupling effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840.
[12] GU Jian-xiao, YANG Jun-yan, WANG Yong, LÜ Hai-bo, . Simulation of carbonate sand with triaxial tests data based on modified model of South water double yield surface [J]. Rock and Soil Mechanics, 2019, 40(12): 4597-4606.
[13] WANG Li-yan, GONG Wen-xue, CAO Xiao-ting, JIANG Peng-ming, WANG Bing-hui. Anti-liquefaction characteristics of gravel steel slag [J]. Rock and Soil Mechanics, 2019, 40(10): 3741-3750.
[14] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Large-scale shaking table model test of liquefiable free field [J]. Rock and Soil Mechanics, 2019, 40(10): 3767-3777.
[15] ZHOU En-quan, WANG Qiong, ZONG Zhi-xin, LU Jian-fei. Cyclic triaxial tests on dynamic characteristics of saturated rubber-sand mixture [J]. Rock and Soil Mechanics, 2019, 40(10): 3797-3804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!