›› 2017, Vol. 38 ›› Issue (5): 1385-1396.doi: 10.16285/j.rsm.2017.05.021

• Geotechnical Engineering • Previous Articles     Next Articles

Uncertainty analysis of slope stability considering geological uncertainty

QI Xiao-hui1, 2, LI Dian-qing1, 2, CAO Zi-jun1, 2, TANG Xiao-song1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2015-07-10 Online:2017-05-11 Published:2018-06-05
  • Supported by:

    This work is supported by the National Science Foundation for Distinguished Young Scholars (51225903), the Natural Science Foundation of China (51329901, 51528901, 51579190).

Abstract: Most reliability analyses of geotechnical structures considering soil heterogeneity mainly focus on inherent variability, namely the heterogeneity in soil parameters. Another type of soil heterogeneity, i.e. geological uncertainty, is not well studied. The geological uncertainty is very common in reality. It appears in the form of one soil layer embedded in another or the inclusion of pockets of different soil types within a more uniform soil mass. Hence, a borehole-based method is proposed to evaluate the uncertainty in probability of failure (Pf) and statistics of factor of safety (FS) for a slope when geological uncertainty is considered. Firstly, different borehole layout schemes are designed using available borehole data. A coupled Markov chain model is constructed to simulate the geological uncertainty. Secondly, slope stability analyses are conducted using a finite element – strength reduction method. Finally, the effect of borehole layout scheme on the uncertainty in FS and Pf of a slope is analyzed. The borehole data in Perth, Australia are adopted to illustrate the effectiveness of the proposed method. The results show that the borehole layout scheme has a significant influence on the uncertainty of FS and Pf of the slope. The FS of the slope in the presence of the geological uncertainty can be described by a Johnson distribution. The Pf and statistics of FS do not necessarily vary with the number of boreholes monotonously. The boreholes within the influence zone of slope are the most effective in evaluating the uncertainty in the FS. The mean of the FS converges to an accurate value as the borehole number increases.

Key words: coupled Markov chain (CMC), geological uncertainty, slope stability, uncertainty analysis

CLC Number: 

  • TU 473.1

[1] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[4] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[5] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[6] XIAHOU Yun-shan, ZHANG Shu, TANG Hui-ming, LIU Xiao, WU Qiong, . Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters [J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945.
[7] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[8] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[9] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
[10] DAI Zhong-hai, HU Zai-qiang, YIN Xiao-tao, WU Zhen-jun,. Deformation stability analysis of gentle reverse inclined layer-like rock slope under engineering load [J]. , 2018, 39(S1): 412-418.
[11] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[12] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[13] LI Wei, XU Qiang, WU Li-zhou, LI Si-qi, . Influence of seepage forms of confined water on translational landslide [J]. , 2018, 39(4): 1401-1410.
[14] LI Shu-cai, HE Peng, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, XU Fei, LIU Hong-liang. Reliability analysis method of sub-classification of tunnel rock mass and its engineering application [J]. , 2018, 39(3): 967-376.
[15] WU Zhen-yu, CHEN Jian-kang. Method of reliability analysis of stability for soil slope and its application in high soil and rockfill dams [J]. , 2018, 39(2): 699-704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!