›› 2017, Vol. 38 ›› Issue (6): 1832-1840.doi: 10.16285/j.rsm.2017.06.035

• Testing Technology • Previous Articles     Next Articles

Development and application of a new geotechnical device for direct tension test

CUI Meng1, 2, 3, HAN Shang-yu4, HONG Bao-ning5   

  1. 1. College of Civil and Structure Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China; 2. Jiangxi Provincial Engineering Research Center of the Special Reinforcement and Safety Monitoring Technology in Hydraulic & Civil Engineering; 3. Jiangxi Province Key Laboratory of Hydraulic & Civil Engineering Infrastructure Security; 4. College of Engineering and Architecture, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China; 5. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2015-10-06 Online:2017-06-12 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51609114), Jiangxi Province Science Foundation for Youths (20114BAB 216010), and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University (2016001).

Abstract: Since the current device for geotechnical direct tension tests is limited, a new direct tension device was developed in this study. The testing device consists of four components: sample preparation, loading, control and data acquisition system. With the novel design of “dovetail” groove and a double sliding plate on the device, direct tension tests can be conducted on prepared samples with different lengths. Due to the chosen sampling forms and their corresponding stretching fixture, the problems of relaxation and stress concentration on the ends of the specimen can be solved during the drawing process. The phenomenon of eccentric stress appearing in the drawing process can be avoided using the double rail stretching device. The minimum tensile rate of the device is 0.001 mm/min assisted by the two-stage gearbox design. Therefore, the device can be used to describe the evolution of uniaxial tensile failure and to determine tensile strength and tensile stress-displacement curve in the whole process. Direct tension tests were carried out on clay specimens using the developed device. The results show that the uniaxial tensile failure mode of clay is not purely brittle fracture, but there exists a softening stage after the tensile strength, and at this moment, clay specimens still have the certain bearing capacity. With the increase of the length of stretching section, the tensile strength decreases logarithmically while the peak displacement increases logarithmically. With the increase of tensile rate, tensile strength increases logarithmically while the peak displacement increases linearly. Both tensile strength and the peak displacement increase linearly with increasing compactness. With the growth of moisture content, tensile strength increases initially and decreases afterward, but the peak displacement linearly increases.

Key words: direct tension, test device, stretching section length, failure mode, tensile strength, peak displacement

CLC Number: 

  • TU 411.3

[1] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] ZHANG Mao-chu, SHENG Qian, CUI Zhen, MA Ya-li-na, ZHOU Guang-xin. Effect of loading rate on tensile strength of rock materials and morphology of fracture joint surface [J]. Rock and Soil Mechanics, 2020, 41(4): 1169-1178.
[4] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[5] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[6] JIANG Nan, HUANG Lin, FENG Jun, ZHANG Sheng-liang, WANG Duo, . Research on design and calculation method of tunnel-type anchorage of railway suspension bridge [J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009.
[7] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[8] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[9] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[10] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[11] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[12] XU Jiang, QU Jia-mei, LIU Yi-xin, PENG Shou-jian, WANG Wei, WU Shan-kang, . Influence of filling material on the behavior of joints under cyclic shear loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637.
[13] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[14] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[15] ZHOU Hui, SONG Ming, ZHANG Chuan-qing, LU Jing-jing, LIU Zhen-jiang, SHI Lin-ken, . Effect of confining pressure on mechanical properties of horizontal layered composite rock [J]. Rock and Soil Mechanics, 2019, 40(2): 465-473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!