Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (1): 55-69.doi: 10.16285/j.rsm.2017.1096

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Summary on damage self-healing property of rock salt

KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang   

  1. State Key Laboratory for Coal Mine Disaster Dynamics and Controls, Chongqing University, Chongqing 400044, China
  • Received:2017-06-02 Online:2019-01-11 Published:2019-01-29
  • Supported by:
    This work was Supported by the National Natural Science Foundation of China (51574048, 51604044, 41672292) and the Graduate Research and Innovation of Chongqing, China (CYB17046).

Abstract: Rock salt has been recognized as a highly suitable medium for geological storage of oil, gas and radioactive wastes because of its low-permeability, high-ductility, low-creep strength and capacity for self-healing. The self-healing of damage, as a significant part of damage evolution of rock salt, has important influence on the stability and permeability of rock salt in excavation disturbed zone (EDZ). The research progress of damage self-healing property of rock salt is summarized from the aspects of mechanism, influencing factors and constitutive models, and the research advances in damage self-healing property of rock salt in China are summarized. In the EDZ, damage healing can occur under three different mechanisms: mechanical closure, diffusive healing driven by surface energy reduction and healing by recrystallization. The major factors that may affect crack healing are stress, temperature, initial damage, humidity, chemical environment and so on. The MDCF model and the Lux/Hou model which consider the self-healing characteristics of salt rock damage are introduced. Furthermore, several key research directions on the damage self-healing of layered salt rock in China are put forward.

Key words: rock salt, crack healing, damage evolution, utilization of salt caverns, constitutive model

CLC Number: 

  • TU 452
[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[3] WANG Xiang-nan, HAO Qing-shuo, YU Jia-lin, YU Yu-zhen, LÜ He, . Three-dimensional simulation of the separation of dam panel based on extended finite element method [J]. Rock and Soil Mechanics, 2020, 41(S1): 329-336.
[4] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[5] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[6] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[7] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[8] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[9] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[10] SONG Yong-jun, YANG Hui-min, ZHANG Lei-tao, REN Jian-xi. CT real-time monitoring on uniaxial damage of frozen red sandstone [J]. Rock and Soil Mechanics, 2019, 40(S1): 152-160.
[11] CHEN Xiang-sheng, LI Yin-ping, SHI Xi-lin, YE Liang-liang, YANG Chun-he, . Analysis of leakage risks and prevention measures of underground salt cavern gas storage [J]. Rock and Soil Mechanics, 2019, 40(S1): 367-373.
[12] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[13] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[14] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[15] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!