›› 2017, Vol. 38 ›› Issue (11): 3187-3196.doi: 10.16285/j.rsm.2017.11.014

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of model test and failure of slope reinforced by soil-cement pile

XU Sheng-cai1, 2, ZHANG Xin-gui1, 2, MA Fu-rong3, CHEN Zi-xing1, 2   

  1. 1. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China; 2. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
  • Received:2016-12-05 Online:2017-11-10 Published:2018-06-05
  • Supported by:

    This work was supported by the Key Laboratory Open Issue of Disaster Prevention and Mitigation and Engineering Safety in Guangxi(2012ZDK08), the Systematic Research Program of Key Laboratory in Guangxi(2013ZDX11) and the National Natural Science Foundation of China (51268003).

Abstract: Soil-cement pile is a common cost-effective reinforced structure used in soft soil slope. However, its deformation, failure, and mechanism of anti-sliding to improve the slope still remain unclear. Currently, relevant researches on stability analysis are relatively limited. A slope model was established by finite element method to analyze the deformation and failure characteristics of reinforced discrete cement-soil pile. The results show that, when failure occurs, the deformation incompatibility between the pile and soil would cause plastic sliding. The soil-cement pile with large stiffness and strength deflects into S-shape, leading to a bending failure of soil-cement pile. It indicates that the soil-cement pile fails to develop the slide-resistant ability as design required. Finally, a shear slip band, instead of a slip surface, passed through the stabilized slope. A concept about soil-cement shear wall has been proposed. By the finite element simulation, the sliding force was found between the shear wall and slide mass due to the effect of interface friction when the soil-cement shear wall was used to stabilize the slope. The general shear failure would occur in the stabilized slope, meaning that the shear wall has effectively mobilized its slide-resistant capacity. At last, a lateral shear model test on the pile-soil composite structure has been carried out to verify the results of the numerical simulation.

Key words: soil-cement pile, soil-cement shear wall, safety factor, strength reduction method, model test

CLC Number: 

  • TU 443

[1] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] ZOU Xin-jun, CAO Xiong, ZHOU Chang-lin, . Model study on the bearing behavior of V-H combined loaded pile in sand considering the current effects [J]. Rock and Soil Mechanics, 2020, 41(6): 1855-1864.
[4] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[5] NING Yi-bing, TANG Hui-ming, ZHANG Bo-cheng, SHEN Pei-wu, ZHANG Guang-cheng, XIA Ding, . Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests [J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020.
[6] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[7] XIAO Ming-qing, XU Chen, . Discussion on stability analysis method of tunnel surrounding rock based on critical stable section [J]. Rock and Soil Mechanics, 2020, 41(5): 1690-1698.
[8] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[9] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[10] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[11] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[12] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[13] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[14] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[15] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!