Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (1): 199-206.doi: 10.16285/j.rsm.2017.1228

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Load analysis of bucket-soil interaction of bucket foundation in sand during jacked penetration

ZHU Xiao-jun1, 2, LI Wen-shuai1, FEI Kang1, KONG Wei-yang1, GONG Wei-ming2   

  1. 1. College of Civil Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; 2. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2017-06-16 Online:2019-01-11 Published:2019-01-30
  • Supported by:
    This work was supported by the Nature Science Foundation of Jiangsu Province of China (BK20170509) and the National Nature Science Foundation of China (51778557).

Abstract: liquefaction and sand boiling are common failure phenomenon during the suction penetration for bucket foundation. However, the jacked penetration can avoid such failure phenomenon. The jacked penetration tests of bucket foundation with different sizes is designed in the laboratory. The earth pressure internal and outer the bucket body is discussed in the process of penetration, meanwhile, the soil displacement field is obtained by using digital image processing technology. Test results show that the soil plugging effect of bucket foundation appears when the penetration depth reached 1 times of the diameter of bucket, and the incremental filling ratio of soil plug is about 0.7 after penetration. The penetration resistance and the inner earth pressure of bucket increase linearly with the penetration depth during the penetration, then exponentially grow when the penetration depth reaches half times of the height of bucket shirt. The soil plug is more effective with 10 cm in diameter of bucket, and the height of soil plug is 15 cm. There is a soil arching effect inside the bucket, a passive soil arch is formed first at the end of bucket, then destroyed as the penetration depth increase, and the active soil arch form.

Key words: bucket foundation, jacked penetration, penetration process, soil plugging effect, model test

CLC Number: 

  • TU 411
[1] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] ZOU Xin-jun, CAO Xiong, ZHOU Chang-lin, . Model study on the bearing behavior of V-H combined loaded pile in sand considering the current effects [J]. Rock and Soil Mechanics, 2020, 41(6): 1855-1864.
[4] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[5] NING Yi-bing, TANG Hui-ming, ZHANG Bo-cheng, SHEN Pei-wu, ZHANG Guang-cheng, XIA Ding, . Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests [J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020.
[6] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[7] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[8] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[9] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[10] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[11] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[12] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[13] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[14] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[15] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!