›› 2018, Vol. 39 ›› Issue (9): 3347-3354.doi: 10.16285/j.rsm.2017.1349

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Theory and experimental study of electromagnetic-driven moisture migration of landslide model

ZHOU Chang, HU Xin-li, XU Chu, WANG Qiang, XU Ying   

  1. Engineering Faculty, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2017-06-22 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (41630643, 41272305), the National Basic Research Program of China(973 Program)(2011CB710604) and the Fundamental Research Founds for the Central Universities (CUGCJ1701, 18010491A26).

Abstract: How to accelerate the seepage rate of water in model test is significant to the study of bank landslide. Based on the principle of electromagnetism, the force of pore water was calculated by applying mutually perpendicular electric and magnetic fields in the landslide model. According to the theory of electroosmotic consolidation, the resultant force of groundwater is calculated, and the relationship between the migration rate and the voltage and magnetic field intensity is deduced, then the time similarity ratio is obtained. The water migration rate of landslide model is improved by controlling the voltage and magnetic field strength applied to the model, and the effect of the electromagnetic field on the soil moisture is verified by experiments. The influence of electromagnetic field significantly affects the water migration velocity, and the voltage has little effect on the stable seepage field of the model. Without changing the parameters of model material, the changes of the magnetic field strength and voltage can determine the seepage velocity of any pore water lays which can be the foundation for studying the evolution mechanism of the landslide under fluctuating reservoir water conditions.

Key words: water level fluctuation, electro-osmosis, electromagnetic drive, model test

CLC Number: 

  • TU 457

[1] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] ZOU Xin-jun, CAO Xiong, ZHOU Chang-lin, . Model study on the bearing behavior of V-H combined loaded pile in sand considering the current effects [J]. Rock and Soil Mechanics, 2020, 41(6): 1855-1864.
[4] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[5] NING Yi-bing, TANG Hui-ming, ZHANG Bo-cheng, SHEN Pei-wu, ZHANG Guang-cheng, XIA Ding, . Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests [J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020.
[6] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[7] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[8] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[9] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[10] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[11] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[12] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[13] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[14] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[15] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!