›› 2018, Vol. 39 ›› Issue (9): 3495-3504.doi: 10.16285/j.rsm.2017.1683

• Testing Technology • Previous Articles    

Model test on mechanical characteristics of surrounding rock during construction process of super-large section tunnel in complex strata

LIU Cong1, LI Shu-cai1, ZHOU Zong-qing1, 2, 3, LI Li-ping1, WANG Kang1, HOU Fu-jin1, 4, QIN Cheng-shuai1, GAO Cheng-lu1   

  1. 1. Geotechnical and Structural Engineering Research Center,Shandong University, Jinan, Shandong 250061, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 4. Shandong Hi-speed Construction Management Co., Ltd., Jinan, Shandong 250101, China
  • Received:2017-08-14 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(51679131, 51709159), the Postdoctoral Science Foundation of China(2017T100492), the State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUE K1702) and the Open Foundation of State Key Laboratory of Hydro-Water Resources and Hydraulic Engineering(2016491211).

Abstract: Based on Ganggou tunnel of Jing-hu high-speed connection line road which crossed large fault zones, mechanical characteristics of surrounding rock were studied during the construction process of super-large section tunnels under complex strata. For this purpose, a large-scale three-dimensional assembled geomechanical model test system was designed and developed. The system included stress and strain field monitoring systems based on static data acquisition and a displacement field monitoring system based on raster ranging in order to monitor the mechanical response of surrounding rocks during tunnel excavating. Model tests on mechanics in construction process of super-large section tunnel under complex strata were conducted, and the data of displacement and stress were real-time monitored during testing through the pre-buried monitoring instruments at specific positions in the models. The results indicate that the displacement deformation of both horizontal and subsidence can be divided into three phases: slowly increasing phase, sharply increasing phase and steady state phase. The sharply increasing of horizontal displacement starts earlier than subsidence. Meanwhile, the three phases of stress accumulation, releasing and steady state of stress are also revealed. The research methods and results will guide similar engineering practices.

Key words: tunnel engineering, super-large section, model test, construction process mechanics, characteristic of surrounding rock

CLC Number: 

  • U 457

[1] ZHANG Lei, HAI Wei-shen, GAN Hao, CAO Wei-ping, WANG Tie-hang, . Study on bearing behavior of flexible single pile subject to horizontal and uplift combined load [J]. Rock and Soil Mechanics, 2020, 41(7): 2261-2270.
[2] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[3] ZOU Xin-jun, CAO Xiong, ZHOU Chang-lin, . Model study on the bearing behavior of V-H combined loaded pile in sand considering the current effects [J]. Rock and Soil Mechanics, 2020, 41(6): 1855-1864.
[4] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[5] NING Yi-bing, TANG Hui-ming, ZHANG Bo-cheng, SHEN Pei-wu, ZHANG Guang-cheng, XIA Ding, . Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests [J]. Rock and Soil Mechanics, 2020, 41(6): 2009-2020.
[6] PU He-fu, PAN You-fu, KHOTEJA Dibangar, ZHOU Yang. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method [J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509.
[7] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[8] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[9] SONG Ding-bao, PU He-fu, CHEN Bao-guo, MENG Qing-da, . Model test on mechanical behavior of rigid load shedding culvert under high fill [J]. Rock and Soil Mechanics, 2020, 41(3): 823-830.
[10] HOU Gong-yu, HU Tao, LI Zi-xiang, XIE Bing-bing, XIAO Hai-lin, ZHOU Tian-ci, . Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology [J]. Rock and Soil Mechanics, 2020, 41(3): 970-979.
[11] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[12] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[13] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[14] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[15] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!