›› 2018, Vol. 39 ›› Issue (S1): 33-41.doi: 10.16285/j.rsm.2017.1709

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of creep characteristics of layered water bearing shale

TANG Jian-xin1, 2, TENG Jun-yang1, 2, ZHANG Chuang1, 2, LIU Shu1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. College of Resources and Environmental Sciences, Chongqing University, Chongqing 400044, China
  • Received:2017-08-16 Online:2018-07-20 Published:2018-09-02

Abstract: In order to analyze the influence of bedding and water on the creep characteristics of shale, five kinds of shale are prepared in the laboratory, including 0, 30, 60, 90 degrees and no bedding. Each kind of bedding shale is treated with 4 kinds of water bearing state, which is dry, natural, water unsaturated and water saturated. The results show that: (1) The bedding angle and water content have great influence on the creep characteristics of shale. At the same moisture content, with the increase of the angle of stratification, the initial instantaneous elasticity of shale decreases exponentially and the instantaneous elastic modulus increases exponentially. At the same layer angle, with the increase of moisture content, the initial instantaneous elastic strain linear growth of shale and linear decrease of instantaneous elastic modulus. (2) The creep of shale is described by Burgers creep model with elastic elements, viscous elements and Kelvin body, and the parameters of the model inversion and the verification. The results show that the model can better reflect the features of the shale creep. According to the law of the influence of the bedding and water on the creep deformation of shale and based on the fitting relationship between the instantaneous elastic modulus, the viscosity coefficient and the bedding angle, water content, the instantaneous elastic modulus and viscosity coefficient of the creep model are replaced by a function of the bedding angle and moisture content; thus a creep model which can reflect shale bedding and water content is constructed.

Key words: uniaxial creep test, shale, moisture content, bedding, creep model

CLC Number: 

  • TU452

[1] BIAN Kang, CHEN Yan-an, LIU Jian, CUI De-shan, LI Yi-ran, LIANG Wen-di, HAN Xiao. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method [J]. Rock and Soil Mechanics, 2020, 41(S1): 355-367.
[2] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[3] HU Tian-fei, WANG Tian-liang, CHANG Jian, LIU Jian-yong, LU Yu-ting, . Code development and verification for coupled process of water migration and heat transfer of frozen soil based on finite volume method [J]. Rock and Soil Mechanics, 2020, 41(5): 1781-1789.
[4] LI Bin, HUANG Da, MA Wen-zhu, . Study on the influence of bedding plane on fracturing behavior of sandstone [J]. Rock and Soil Mechanics, 2020, 41(3): 858-868.
[5] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[6] XIU Nai-ling, YAN Yu-zhong, XU Yun, WANG Xin, GUAN Bao-shan, WANG Zhen, LIANG Tian-cheng, FU Hai-feng, TIAN Guo-rong, MENG Chuan-you, . Experimental study on conductivity of self-supporting shear fractures based on non-Darcy flow [J]. Rock and Soil Mechanics, 2019, 40(S1): 135-142.
[7] LI Jing-jing, KONG Ling-wei, . Creep properties of expansive soil under unloading stress and its nonlinear constitutive model [J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3475.
[8] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[9] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[10] JI Guo-fa, LI Kui-dong, ZHANG Gong-she, LI Shao-ming, ZHANG Lei, LIU Wei, . Fractal calculation method of model I fracture toughness of shale rock and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1925-1931.
[11] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[12] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[13] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[14] LI Yu-dan, DONG Ping-chuan, ZHOU Da-wei, WU Zi-seng, WANG Yang, CAO Nai. A dynamic model of apparent permeability for micro fractures in shale gas reservoirs [J]. , 2018, 39(S1): 42-50.
[15] ZHANG Yu, WANG Ya-ling, YU Jin, ZHANG Xiao-dong, LUAN Ya-lin,. Creep behavior and its nonlinear creep model of deep gypsum mudstone [J]. , 2018, 39(S1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!