›› 2018, Vol. 39 ›› Issue (11): 4102-4108.doi: 10.16285/j.rsm.2017.2403

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Empirical formula for shear strength of marble joints infilled with sands

JIAO Feng1, GUO Bao-hua1, 2, ZHAI Ming-lei1   

  1. 1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. The Collaborative Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2017-12-04 Online:2018-11-10 Published:2018-11-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51109076).

Abstract: To investigate the effect of sandy fillings on the shear strength of rock joints, direct shear tests were conducted on single-joint fine-grained marble specimens infilled with four types of sands with different frictional coefficients. The results show that the peak shear stress of unfilled marble joints was greater than those of infilled marble joints under a same normal stress. It is indicated that the existence of sandy fillings reduced the shear strength of rock joints. A new empirical formula for the shear strength of the unfilled joints was proposed, expressed by the three-dimensional roughness parameter of maximum valley depth of the joint surfaces, and its calculated shear strength of the unfilled joints roughly coincided with their test values. An empirical formula of peak shear strength for infilled fine-grained marble joints was also obtained, expressed by the friction coefficients of infilled sands. the predicted shear strength of infilled rock joints was in accordance with the test values. Above conclusions have some helps to evaluate the stability of infilled jointed rock mass in rock engineering.

Key words: rock mechanics, infilled joint, direct shear test, 3D morphology parameter, strength empirical formula

CLC Number: 

  • TU 451

[1] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[2] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2020, 41(3): 939-951.
[3] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[4] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[5] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[6] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[7] CHAI Wei, LONG Zhi-lin, KUANG Du-min, CHEN Jia-min, YAN Chao-ping. Effect of shear rate on shear strength and deformation characteristics of calcareous sand in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(S1): 359-366.
[8] SEISUKE Okubo, TANG Yang, XU Jiang, PENG Shou-jian, CHEN Can-can, YAN Zhao-song, . Application of 3D-DIC system in rock mechanic test [J]. Rock and Soil Mechanics, 2019, 40(8): 3263-3273.
[9] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[10] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[11] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[12] LI Wen-Xuan, BIAN Shi-hai , LI Guo-ying, WU Jun-jie, . Interface model of coarse-grained soils and its application in earth rock dam [J]. Rock and Soil Mechanics, 2019, 40(6): 2379-2388.
[13] CHEN Guo-qing, TANG Peng, LI Guang-ming, ZHANG Guang-ze, WANG Dong, . Analysis of acoustic emission frequency spectrum characteristics and main fracture precursor of rock bridge in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(5): 1649-1656.
[14] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[15] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!