›› 2018, Vol. 39 ›› Issue (S1): 425-436.doi: 10.16285/j.rsm.2018.0193

• Geotechnical Engineering • Previous Articles     Next Articles

Study of relationship between underground mining and surface deformation in metal mines

SONG Xu-gen1,2, CHEN Cong-xin1,2, PANG Hou-li3, XIA Kai-zong1,2, CHEN Shan1,2, YANG Kuo-yu1,2, SUN Chao-yi1,2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Received:2018-01-30 Online:2018-07-20 Published:2018-09-02
  • Supported by:

    This work was supported by the National Key R & D Program of China(2017YFC0805307), the National Natural Science Foundation of China(41602325, 41202225), and Youth Innovation Promotion Association CAS (2015271).

Abstract: Analysis of surface deformation caused by underground mining in metal mines can provide guidance for the mine safety production and prediction of surface deformation. Taking Chengchao iron mine, Hubei province, in China, for example. Through the investigation of underground mining situations and the analysis of monitoring data by GPS, leveling and three-dimensional laser scanning. The relationship between the mined-out area and the movement and break lines, the relationship between underground mining and settlement funnel expansion and the relationship between underground mining and displacement of measuring points are discussed. The results show that the expansion of movement and break lines in the western mining area mainly concentrated in the northeast, east and southeast direction from the year of 2006 to 2017 due to the -325, -342.5, -358, -375.5 m and -393 m level mined-out area expand continuously to the east, and a new funnel center developed in the east of the settlement funnel, and the funnel curve of the settlement funnel gradually shows two funnel centers. The displacement of measuring point just above the mined-out area is directly controlled by the underground mining. When the orebody below the measuring points is explored, the deformation of the measuring points will be accelerated obviously. However, the displacement of measuring points in the vicinity of the mined-out is affected by many factors. Based on the monitoring results, the caving process of overlying rock masses is analyzed. However, the mechanical models of rock masses around the mined-out area are established, and the deformation law of monitoring points is explained. The results can provide references for other similar metal mines.

Key words: metal mine, underground mining, surface deformation, deformation monitoring

CLC Number: 

  • TD31

[1] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, ZHENG Xian-wei, . Cause analysis of surface collapse in western area of Chengchao iron mine [J]. Rock and Soil Mechanics, 2019, 40(2): 743-758.
[2] YAO Yang-ping, WANG Jun-bo. Application of Beidou satellite positioning to deformation remote monitoring of high fill airport [J]. , 2018, 39(S1): 419-424.
[3] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, FU-hua, SUN Chao-yi, SONG Xu-gen, . Ground movement and deformation caused by underground mining in eastern area of Chengchao iron mine [J]. , 2018, 39(9): 3385-3394.
[4] ZHANG Chuan-qing, GAO Yang, LIU Ning, ZHOU Hui, FENG Xia-ting, . Reflection on the problems in mechanical response monitoring and testing design of deep tunnels [J]. , 2018, 39(7): 2626-2631.
[5] WANG Hai–cheng, XU Jin–jun, GUO Xin–wei,. Direct deformation calculation method based on two point clouds and its application to channel slope deformation monitoring [J]. , 2017, 38(S1): 211-218.
[6] SONG Xu-gen, CHEN Cong-xin, XIA Kai-zong, CHEN Long-long, FU Hua,. Research on deformation mechanism and feasibility of continuous use of mine shaft [J]. , 2017, 38(S1): 331-342.
[7] CHEN Long-long, CHEN Cong-xin, XIA Bo-ru, XIA Kai-zong, FU Hua, DENG Yang-yang, SONG Xu-geng, SUN Zhao-yi. Study on mechanism of formation and expansion of ground caving-in in the eastern Chengchao Iron Mine [J]. , 2017, 38(8): 2322-2334.
[8] FAN Cheng-kai, SUN Yan-kun, LI Qi, LU Hai-feng, NIU Zhi-yong, LI Xia-ying, . Testing Technology of fiber Bragg grating in the shale damage experiments under uniaxial compression conditions [J]. , 2017, 38(8): 2456-2464.
[9] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, FU-hua, ZHANG Hai-na. Analysis of deformation characteristics of surface around east main shaft in Chengchao iron mine [J]. , 2016, 37(S1): 455-461.
[10] LI Xiao-chun, YUAN Wei, BAI Bing,. A review of numerical simulation methods for geomechanical problems induced by CO2 geological storage [J]. , 2016, 37(6): 1762-1772.
[11] XIA Kai-zong, CHEN Cong-xin, FU Hua, ZHENG Yun, DENG Yang-yang. Analysis of law of ground deformation induced by caving mining in metal mines [J]. , 2016, 37(5): 1434-1440.
[12] CHEN Kun,YAN Shu-wang,SUN Li-qiang,WANG Ya-wen,. Analysis of deformation of deep foundation pit under excavation unloading condition [J]. , 2016, 37(4): 1075-1082.
[13] LIU Han-dong , ZHU Hua , HUANG Yin-wei,. Stability research on Guocun goaf area at Middle Route Project of South-to-North water diversion [J]. , 2015, 36(S2): 519-524.
[14] ZHAO Kang ,ZHAO Kui ,SHI Liang,. Collapsing height prediction of overburden rockmass at metal mine based on dimensional analysis [J]. , 2015, 36(7): 2021-2026.
[15] CAO Shuai ,DU Cui-feng ,MU Chang-ping ,LEI Yuan-kun,. UDEC- based modelling of mining surface movement due to transforming from block caving to sublevel filling and its law verification [J]. , 2015, 36(6): 1737-1743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!