Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (5): 1771-1777.doi: 10.16285/j.rsm.2018.1267

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea

CAO Meng1, 2, YE Jian-hong2   

  1. 1. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, Hubei 430070, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2018-07-13 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010202) and the National Natural Science Foundation of China (51879257).

Abstract: Calcareous sand, a type of geo-material with special structure and mechanical properties formed due to the marine biological deposition process, is the material used in the dredger filling engineering of South China Sea. To further understand its creep properties, a series of long-term creep tests under different confining pressures were carried out using triaxial rheological apparatus on calcareous sand sampled from a coral reef island located at South China Sea. Experimental results show that the damping creep of saturated calcareous sand occurs under constant pressure load that is less than the failure strength. The deformation increases with time, while the deformation rate decreases until the deformation becomes stable. The larger the applied stress is, the longer the deformation becomes stable. The creep deformation is positively correlated with the deviatoric stress, while it is inversely correlated with the effective confining pressure. The relationships of strain-stress and strain-time are nonlinear. It is found that the strain-time relationship of calcareous sand can be described by power function. A new creep model of calcareous sand, considering the relationships of four parameters (i.e. creep strain, time, deviatoric stress and effective confining pressure), is proposed in this paper. Compared with the traditional empirical Mesri creep model, it is unnecessary to perform the conventional triaxial test to determine the peak failure strength in the proposed new model. Less experimental work is required and thus it is much easier to be used.

Key words: calcareous sand in South China Sea, triaxial creep tests, creep properties, creep mathematical model

CLC Number: 

  • TU 411
[1] ZHANG Yu, WANG Ya-ling, YU Jin, ZHANG Xiao-dong, LUAN Ya-lin,. Creep behavior and its nonlinear creep model of deep gypsum mudstone [J]. , 2018, 39(S1): 105-112.
[2] YANG Chao, HUANG Da, CAI Rui, HUANG Run-qiu,. Triaxial unloading creep tests on rock mass with an open and penetrating flaw [J]. , 2018, 39(1): 53-62.
[3] CHEN Guo-qing, GUO Fan, WANG Jian-chao, ZHOU Yu-xin, . Experimental study of creep properties of quartz sandstone after freezing-thawing cycles [J]. , 2017, 38(S1): 203-210.
[4] SHI Xiang, FAN Heng-hui, LIU Gang, LI Pu, ZHANG Run-hong. An experimental study of creep properties of dispersive soil [J]. , 2017, 38(4): 1015-1022.
[5] SUN Miao-jun, TANG Hui-ming, WANG Xiao-hong, HU Xin-li, WANG Ming-yuan, NI Wei-da,. Creep properties of sliding-zone soil from a creeping landslide [J]. , 2017, 38(2): 385-391.
[6] ZHANG Yu, WANG Ya-ling, ZHANG Xiao-dong, LI Jing, LUAN Ya-lin. Experimental study of creep behaviour of gypsum mudstone in a deep reservoir [J]. , 2017, 38(11): 3179-3186.
[7] SHAN Ren-liang, SONG Li-wei, LI Dong-yang, HUANG Bao-long, LIU Nian, ZHAO Wen-feng. Study of nonlinear creep model of frozen red sandstone [J]. , 2014, 35(6): 1541-1546.
[8] WANG Jun-bao ,LIU Xin-rong ,HUANG Ming ,YANG Xin,. Analysis of axial creep properties of salt rock under low frequency cyclic loading using Burgers model [J]. , 2014, 35(4): 933-942.
[9] HU Xin-li, SUN Miao-jun, TANG Hui-ming, XIE Ni, GUO Jia. Creep tests of gravel-soil of Majiagou landslide in Three Gorges Reservoir area [J]. , 2014, 35(11): 3163-3169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!