Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (3): 736-746.doi: 10.16285/j.rsm.2019.0339

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on chemical compatibility of sand-bentonite backfills for vertical cutoff barrier permeated with inorganic salt solutions

FAN Ri-dong1, 2, DU Yan-jun1, 2, LIU Song-yu1, 2, YANG Yu-ling1, 2   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2019-02-13 Revised:2019-08-20 Online:2020-03-11 Published:2020-05-25
  • Supported by:
    This work was supported by the National Key Research and Development Program (2018YFC1803101), the National Natural Science Foundation of China (41877248), the Natural Science Foundation of Jiangsu Province (BE2017715), the China Postdoctoral Science Foundation(2018M642143) and the Fundamental Research Funds for the Central Universities (2242019R20033).

Abstract: Soil-bentonite vertical cutoff wall is extensively applied to containment of urban industrial lands. Chemical compatibility of soil-bentonite backfill exposed to chemical solutions, i.e., hydraulic conductivity and its amplitude, is of importance to evaluate containment performance. Chemical compatibility of sand-bentonite backfill permeated with lead-zinc mixture (Pb-Zn), hexavalent chromium (Cr(VI)), and calcium (Ca) solutions was studied via flexible wall permeability test. The resulting hydraulic conductivity of the backfill permeated with Pb-Zn and Ca solutions considerably increases compared with the result obtained from uncontaminated specimen due to the squeeze of the double layer around bentonite particles. The hydraulic conductivity can not meet the requirement of anti-seepage when Pb-Zn concentration increased to 500 mmol/L. In contrast, limited increase in hydraulic conductivity is found when the backfill is permeated with Cr(VI) solutions. This is attributed to the fact that Cr(VI) exists in anionic complex rather than exchangeable cation. Predicting method for hydraulic conductivity of sand-bentonite backfills is developed based on the concept of bentonite void ratio and swell index of bentonite exposed to the corresponding inorganic solution.

Key words: bentonite, vertical cutoff barrier, inorganic salt, hydraulic conductivity, predictive method

CLC Number: 

  • TU411
[1] HU Yun-shi, XU Yun-shan, SUN De-an, CHEN Bo, ZENG Zhao-tian, . Temperature dependence of thermal conductivity of granular bentonites [J]. Rock and Soil Mechanics, 2021, 42(7): 1774-1782.
[2] WANG Ying, ZHANG Hu-yuan, TONG Yan-mei, ZHOU Guang-ping, . Influence of joint sealing material on the sealing performance of the buffer block barrier [J]. Rock and Soil Mechanics, 2021, 42(6): 1648-1658.
[3] ZHANG Hu-yuan, ZHAO Bing-zheng, TONG Yan-mei, . Thermal conductivity and uniformity of hybrid buffer blocks [J]. Rock and Soil Mechanics, 2020, 41(S1): 1-8.
[4] QIN Ai-fang, HU Hong-liang. Swelling characteristics of Gaomiaozi Ca-bentonite saturated in alkaline solution and prediction [J]. Rock and Soil Mechanics, 2020, 41(S1): 123-131.
[5] PENG Lei, CHEN Bing. Calculation of swelling deformation of Gaomiaozi bentonite based on fractal dimension measured by synchrotron radiation SAXS and liquid nitrogen adsorption [J]. Rock and Soil Mechanics, 2020, 41(8): 2712-2721.
[6] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[7] DAO Minh-huan, LIU Qing-bing, HUANG Wei, XIANG Wei, WANG Zhen-hua, . Study on desiccation –shrinkage characteristic and shrinkage cracking mechanism of bentonite and sand mixtures [J]. Rock and Soil Mechanics, 2020, 41(3): 789-798.
[8] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[9] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[10] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[11] XU Hao-qing, ZHOU Ai-zhao, JIANG Peng-ming, LIU Shun-qing, SONG Miao-miao, CHEN Liang, . Study on bentonite content of different sand-bentonite vertical cutoff wall backfill materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 424-430.
[12] TAN Yun-zhi, PENG Fan, QIAN Fang-hong, SUN De-an, MING Hua-jun, . Optimal mixed scheme of graphite-bentonite buffer material [J]. Rock and Soil Mechanics, 2019, 40(9): 3387-3396.
[13] FAN Ri-dong, LIU Song-yu, DU Yan-jun, . Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites [J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996.
[14] TAN Yun-zhi, LI Hui, WANG Pei-rong, PENG Fan, FANG Yan-fen, . Hydro-mechanical performances of bentonite respond to heat-treated history [J]. Rock and Soil Mechanics, 2019, 40(2): 489-496.
[15] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Experimental study on aging effect on bentonite thermal conductivity [J]. Rock and Soil Mechanics, 2019, 40(11): 4324-4330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .