Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1429-1436.doi: 10.16285/j.rsm.2019.1028

• Numerical Analysis • Previous Articles     Next Articles

The numerical manifold method for boundary integrals in elastostatics

NIE Zhi-bao, ZHENG Hong, WAN Tao, LIN Shan   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2019-06-10 Revised:2019-07-15 Online:2020-04-11 Published:2020-07-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51538001, 11572009).

Abstract: The traditional numerical manifold method (NMM) adopts the form of regional integration. This paper proposed a new NMM in the form of boundary integral by integrating the advantages of both the boundary element method (BEM) and the NMM, namely the dimension reduction of BEM and the flexibility of local base selection of NMM. For two-dimensional elastostatics problems, three different benchmark examples with analytical solutions are applied to verify the validity and efficiency of the newly proposed NMM. The results show that the accuracy of the proposed procedure can be effectively improved by increasing the order of the local basis.

Key words: numerical manifold method, boundary element method, elastostatics problem, stress intensity factor

CLC Number: 

  • TU 452
[1] WANG Ben-xin, JIN Ai-bing, SUN Hao, WANG Shu-liang, . Study on fracture mechanism of specimens with 3D printed rough cross joints at different angles based on DIC [J]. Rock and Soil Mechanics, 2021, 42(2): 439-450.
[2] KE Jin-fu, WANG Shui-lin, ZHENG Hong, YANG Yong-tao, . Application and promotion of a modified symmetric and anti-symmetric decomposition-based three-dimensional numerical manifold method [J]. Rock and Soil Mechanics, 2020, 41(2): 695-706.
[3] JIANG Jie, WANG Shun-wei, OU Xiao-duo, FU Chen-zhi, . Analysis of the bearing characteristics of single pile under the T→V loading path in clay ground [J]. Rock and Soil Mechanics, 2020, 41(11): 3573-3582.
[4] KE Jin-fu, WANG Shui-lin, . A study on the block-cutting technique of three-dimensional numerical manifold method [J]. Rock and Soil Mechanics, 2020, 41(10): 3473-3480.
[5] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[6] LIU Deng-xue, ZHANG You-liang, DING Xiu-li, HUANG Shu-ling, PEI Qi-tao, . Local mesh refinement algorithm based on analysis-suitable T-spline in numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(4): 1584-1595.
[7] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[8] BA Zhen-ning, ZHOU Xu, LIANG Jian-wen, . Scattering of plane qP-qSV waves by a convex topography based on the transversely isotropic medium [J]. Rock and Soil Mechanics, 2019, 40(1): 379-387.
[9] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua,. Study of three-dimensional crack propagation based on numerical manifold method [J]. , 2018, 39(S1): 488-494.
[10] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Study on hydraulic fracture of gravity dam using the numerical manifold method [J]. , 2018, 39(8): 3055-3060.
[11] HAN Zhi-ming, QIAO Chun-sheng, ZHU Ju. Analysis of strength and failure characteristics of rock mass with two sets of cross-persistent joints [J]. , 2018, 39(7): 2451-2460.
[12] LI Qing, YU Qiang, XU Wen-long, WAN Ming-hua, ZHANG Zheng, Lü Chen, WANG Han-jun,. Experimental research on determination of dynamic stress intensity factor of type-Ⅰ crack using strain gage method [J]. , 2018, 39(4): 1211-1218.
[13] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
[14] SONG Yi-min, XING Tong-zhen, LÜ Xiang-feng, ZHAO Ze-xin, DENG Lin-lin, . Fracture characteristics of granite with mode-I pre-crack at different loading rates [J]. Rock and Soil Mechanics, 2018, 39(12): 4369-4375.
[15] LIU Zhong-xian, QI Xin, WANG Dong, CHAI Shou-xi, YAO Shu,. Simulation of dynamic interaction between sedimentary valley and buildings under seismic loading by 2D IBEM [J]. , 2018, 39(10): 3803-3811.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .
[2] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[3] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .
[4] YANG You-lian,ZHU Jun-gao,YU Ting,WU Xiao-ming. Experimental study of mechanical behaviour of soil-structure interface by ring shear test[J]. , 2009, 30(11): 3256 -3260 .
[5] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .
[6] KONG Wei-xue,RUI Yong-qin,DONG Bao-di. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. , 2009, 30(11): 3278 -3282 .
[7] NI Xiao-hui,ZHU Zhen-de,ZHAO Jie,LI Dao-wei,FENG Xia-ting. Meso-damage mechanical digitalization test of complete process of rock failure[J]. , 2009, 30(11): 3283 -3290 .
[8] WANG Wei,WANG Shui-lin,TANG Hua,ZHOU Ping-gen. Application of 3-D GIS to monitoring and forecast system of landslide hazard[J]. , 2009, 30(11): 3379 -3385 .
[9] SHEN Yang, ZHOU Jian, GONG Xiao-nan, LIU Han-long. Experimental study of stress-strain properties of intact soft clay considering the change of principal stress direction[J]. , 2009, 30(12): 3720 -3726 .
[10] QI Ji-lin,MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. , 2010, 31(1): 133 -143 .