Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (1): 1-10.doi: 10.16285/j.rsm.2019.1852

• Fundamental Theroy and Experimental Research •     Next Articles

Experimental study of seepage erosion induced by pipeline damage under full pipe flow condition

LIU Cheng-yu1, 2, CHEN Bo-wen1, LUO Hong-lin1, RUAN Jia-chun1   

  1. 1. College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China; 2. Fujian Provincial Universities Engineering Research Center of Geological Engineering, Fuzhou, Fujian 350116, China
  • Received:2019-10-29 Revised:2019-12-12 Online:2020-01-13 Published:2020-01-05
  • About author:LIU Cheng-yu, male, (1970-), PhD, Professor, doctoral supervisor, mainly engaged in the research of engineering geology, tunnel and underground engineering. E-mail: Liuchengyuphd@163.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (41272300).

Abstract: Aiming at the problems of ground settlement induced by the underground pipeline damage in water-rich sand layer, a set of visualization experimental device was designed. For these cases of 11 kinds of sand samples with particle size of skeleton d90=1.45?8.45 mm and 5 kinds of full pipe flow velocity, the law of ground settlement induced by seepage erosion was studied. Research show that: 1) There are three modes of seepage erosion induced by pipeline damage: only water inrush without settlement, soil arching formation with settlement and sand crushing with settlement; 2) The particle size of soil skeleton , damaged mouth size and thick-span ratio are the main factors to determine the seepage erosion mode of soil; 3) When the soil arching or sand crushing is formed in the soil above the damaged mouth of pipeline, the relationship between the particle size of skeleton d90 and the thick-span ratio r is that: when 8.0≥r≥4.2, the d90 decreases parabolically with the increase of r; when 12.5≥r≥8.0, d90 remains unchanged; 4) When the soil arching or sand crushing is formed in the soil above the damaged mouth of pipeline, the initial settlement radius and settlement depth with the flow velocity equal to 0 are determined by the ratio (D/d50) of the damaged mouth diameter D and the average particle size of soil d50; the settlement radius and depth increase linearly with the increase of full pipe flow velocity; when the soil arching is formed, the expansion velocity (VL、VH) of settlement radius and settlement depth with the increase of flow velocity is logarithmic to D/d50. When the sand crushing is formed, the expansion velocity VL of settlement radius with the increase of flow velocity is that, when 23.0≥D/d50≥6.0, it increases linearly with the increase of D/d50; when 42.0≥D/d50≥23.0, it decreases logarithmically with the increase of D/d50.

Key words: seepage erosion, settlement, thick-span ratio, flow velocity, particle size

CLC Number: 

  • TU 470
[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[3] ZHENG Li-fu, GAO Yong-tao, ZHOU Yu, TIAN Shu-guang, . Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method [J]. Rock and Soil Mechanics, 2020, 41(6): 2110-2121.
[4] ZHOU En-quan, ZONG Zhi-xin, WANG Qiong, LU Jian-fei, ZUO Xi. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures [J]. Rock and Soil Mechanics, 2020, 41(4): 1388-1395.
[5] YAN Chao-ping, LONG Zhi-lin, ZHOU Yi-chun, KUANG Du-min, CHEN Jia-min, . Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand [J]. Rock and Soil Mechanics, 2020, 41(2): 581-591.
[6] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[7] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[8] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[9] TAN Yun-zhi, PENG Fan, QIAN Fang-hong, SUN De-an, MING Hua-jun, . Optimal mixed scheme of graphite-bentonite buffer material [J]. Rock and Soil Mechanics, 2019, 40(9): 3387-3396.
[10] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[11] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[12] ZHANG Sheng, QIAO Chun-hui, LI Xi, SHEN Yuan, . Theoretical determination of the sieving mass by the gradation diversity [J]. Rock and Soil Mechanics, 2019, 40(7): 2555-2562.
[13] WANG Ping, ZHU Yong-jian, YU Wei-jian, REN Heng, HUANG Zhong, . Experimental analysis on fractional compaction mechanical characteristics of soft and broken rock [J]. Rock and Soil Mechanics, 2019, 40(7): 2703-2712.
[14] DU Wen, WANG Yong-hong, LI Li, ZHU Lian-chen, ZHU Hao-tian, WANG You-qi, . Case study on double-deck subway station undercrossing and analysis of filed monitoring about this case [J]. Rock and Soil Mechanics, 2019, 40(7): 2765-2773.
[15] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!