Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (7): 1903-1910.doi: 10.16285/j.rsm.2019.1957

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A constitutive model considering post-liquefaction deformation based on the logarithmic skeleton curve

DONG Qing1, ZHOU Zheng-hua1, SU Jie1, LI Xiao-jun2, HAO Bing1   

  1. 1. College of Transportation Science & Engineering, Nanjing Tech. University, Nanjing, Jiangsu 210009, China; 2. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2019-11-17 Revised:2021-05-19 Online:2021-07-12 Published:2021-07-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U1839202) and the National Program on Key Basic Research Project of China (2017YFC1500400).

Abstract: Most of the constitutive model for liquefaction analysis cannot simulate the large post-liquefaction deformation of saturated sand, and there is little research on the nonlinear time-domain large deformation constitutive relationships suitable for seismic response analysis of saturated sand sites. In this paper, a feasible, simple and applicable large deformation constitutive model for time domain analysis is proposed through experimental analysis and theoretical research. The post-liquefaction stress-strain relationships of liquefied sand are obtained based on the undrained cyclic triaxial test data, then loading-reloading rules of large post-liquefaction deformation are proposed. Combined with the effective stress constitutive model based on logarithmic skeleton curve, a constitutive model that can quantitatively describe the large deformation of saturated sand liquefaction is proposed. According to the test results, the constitutive model can simulate small to large deformations from the pre-to post-liquefaction regime of sand. This constitutive model is also implemented to the program Soilresp1D for the dynamic response analysis of liquefiable soil sites. The results show that the time domain nonlinear large deformation unified constitutive model based on the logarithmic dynamic skeleton curve, effective stress-modified logarithmic dynamic skeleton constitutive model and liquefaction large deformation constitutive model can be directly applied to the dynamic response analysis of saturated sand.

Key words: logarithmic skeleton curve, effective stress, liquefaction of saturated sand, loading-unloading rules, large deformation constitutive model

CLC Number: 

  • TU 441
[1] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[2] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[3] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[4] MAO Xiao-long, LIU Yue-tian, GUAN Wen-long, REN Xing-nan, FENG Yue-li, DING Zu-peng, . An effective stress equation for pore volume strain [J]. Rock and Soil Mechanics, 2019, 40(8): 3004-3010.
[5] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[6] CHEN Yu-min, CHEN Run-ze, HUO Zheng-ge, . Study of flow deformation of saturated suspended plastic sand by visualized ring shear tests [J]. Rock and Soil Mechanics, 2019, 40(10): 3709-3716.
[7] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[8] ZHANG Tian-jun, SHANG Hong-bo, LI Shu-gang, WEI Wen-wei, BAO Ruo-yu, PAN Hong-yu,. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states [J]. , 2018, 39(7): 2361-2370.
[9] CHEN Wei-zhong, MA Yong-shang, YU Hong-dan, GONG Zhe, LI Xiang-ling,. Parameter sensitivity analysis for thermo-hydro-mechanical coupling model of clay tunnel for radioactive waste disposal [J]. , 2018, 39(2): 407-416.
[10] LI Lin, LI Jing-pei, ZHAO Gao-wen, CUI Ji-fei, . Time-dependent bearing capacity of a jacked pile based on the effective stress method [J]. Rock and Soil Mechanics, 2018, 39(12): 4547-4553.
[11] QIAN Jin-song, LI Jia-yang, ZHOU Ding, LING Jian-ming. Prediction model of resilient modulus for unsaturated clay soils considering the effect of matric suction [J]. , 2018, 39(1): 123-128.
[12] ZHOU Feng-xi, CAO Xiao-lin, MA Qiang,. Analysis of capillary cohesion and suction stress characteristic curve between two spheres [J]. , 2017, 38(7): 2036-2042.
[13] WANG Bao, DONG Xing-ling,. Hydraulic conductivity of mine leachate through geosynthetic clay liners under different effective stresses [J]. , 2017, 38(5): 1350-1358.
[14] XIANG Guo-sheng, XU Yong-fu, CHEN Tao, JIANG Hao,. Fractal model for swelling deformation of bentonite in salt solution [J]. , 2017, 38(1): 75-80.
[15] SONG Zi-heng, YANG Qiang, LIU Yao-ru. Elastoplastic model for geomaterial considering effect of pore water pressure and its finite elements implementation [J]. , 2016, 37(S1): 500-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .