Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (10): 3214-3224.doi: 10.16285/j.rsm.2020.0004

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on the fracture mechanism of 3D-printed-joint specimens based on DIC technology

JIN Ai-bing1, 2, WANG Shu-liang1, 2, WANG Ben-xin1, 2, SUN Hao1, 2, ZHAO Yi-qing1, 2   

  1. 1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-01-17 Revised:2020-06-20 Online:2020-10-12 Published:2020-11-05
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51674015, 51804018), the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (2017) (SHJT-17-42.1) and the Fundamental Research Funds for the Central Universities (FRF-TP-19-026A1).

Abstract: In order to accurately characterize the deformation and failure modes of prefabricated jointed rocks with different angles under uniaxial compression, a joint model based on 3D printing technology was used to simulate the structural surface in the rock mass. Rock specimens with precast joints with different angles were obtained by pouring cement mortar, and a uniaxial compression test was performed. At the same time, digital image correlation (DIC) technology was used to observe and analyze the process of crack formation, propagation, and penetration in the test specimen. The results showed that as the angle of prefabricated joints increased from 0° to 90°, a decrease followed by an increase in the strength and peak strain of the test piece was observed. Additionally, the elastic modulus of the test piece with angles of 0° and 45° decreased compared to the complete test piece. Based on the DIC test results, the cracks of specimens with angles of 0°, 30°, 45°, and 60° all started from the tip of the prefabricated joint. The crack initiation stress of the specimens with different angles was all consistent with the strength change of the specimens. Under shear stress, the cracks started in the form of shear wing cracks. The cracks of 0° and 45° specimens changed from shear to tensile cracks during the propagation process, and the shear cracks were observed in the specimens of 30° and 60° throughout this process. The crack of the specimen of 90° started from the bottom and tensile failure was eventually witnessed. In this study, an obvious linear positive correlation was found between the cracking angle θ2 of the lower wing and the cracking angle θ1 of the upper wing, and it can be expressed as θ2= 0.828 6θ1 +12.185. As the joint angle increased, the cracking stress decreased first and then increased, which was consistent with the peak stress.

Key words: 3D printing, single joint, uniaxial compression, digital image correlation (DIC) technology, crack propagation, crack initiation angle

CLC Number: 

  • TU 452
[1] WANG Ben-xin, JIN Ai-bing, SUN Hao, WANG Shu-liang, . Study on fracture mechanism of specimens with 3D printed rough cross joints at different angles based on DIC [J]. Rock and Soil Mechanics, 2021, 42(2): 439-450.
[2] REN Yi, WU Shun-chuan, GAO Yong-tao, GAN Yi-xiong, . Effect of sensor calibration on moment tensor analysis of granite uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(2): 451-461.
[3] WANG Ben-xin, JIN Ai-bing, WANG Shu-liang, SUN Hao, . Mechanical characteristics and fracture mechanism of 3D printed rock samples with cross joints [J]. Rock and Soil Mechanics, 2021, 42(1): 39-49.
[4] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[5] ZHANG Ke, QI Fei-fei, CHEN Yu-long, . Deformation and fracturing characteristics of fracture network model and influence of filling based on 3D printing and DIC technologies [J]. Rock and Soil Mechanics, 2020, 41(8): 2555-2563.
[6] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[7] PAN Rui, CHENG Hua, WANG Lei, WANG Feng-yun, CAI Yi, CAO Guang-yong, ZHANG Peng, ZHANG Hao-jie, . Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway [J]. Rock and Soil Mechanics, 2020, 41(6): 1887-1898.
[8] AI Di-hao, LI Cheng-wu, ZHAO Yue-chao, LI Guang-yao, . Investigation on micro-seismic, electromagnetic radiation and crack propagation characteristics of coal under static loading [J]. Rock and Soil Mechanics, 2020, 41(6): 2043-2051.
[9] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[10] JIN Ai-bing, WANG Shu-liang, WANG Ben-xin, SUN Hao, CHEN Shuai-jun, ZHU Dong-feng, . Fracture mechanism of specimens with 3D printing cross joint based on DIC technology [J]. Rock and Soil Mechanics, 2020, 41(12): 3862-3872.
[11] LI Xiao-zhao, BAN Li-ren, QI Cheng-zhi, . Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks [J]. Rock and Soil Mechanics, 2020, 41(12): 3987-3995.
[12] CUI Wei, ZOU Xu, LI Zheng, JIANG Zhi-an, XIE Wu, . Experimental study on seepage diffusion movement in fractal rock fractures [J]. Rock and Soil Mechanics, 2020, 41(11): 3553-3562.
[13] YI Xue-feng, LIU Chun-kang, WANG Yu. Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning [J]. Rock and Soil Mechanics, 2020, 41(10): 3365-3373.
[14] SHU Qin, WANG Xue-bin, ZHAO Yang-feng, BAI Xue-yuan, . Numerical simulation of failure processes of heterogeneous rock specimens under assumption of invariant spherical stress during stress drop [J]. Rock and Soil Mechanics, 2020, 41(10): 3465-3472.
[15] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[5] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[6] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[7] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[8] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[9] LIU Xiao, TANG Hui-ming, LUO Hong-ming, CHEN Sou-yi. Study of seepage flow for Chinese design codes of landslide stabilization[J]. , 2009, 30(10): 3173 -3180 .
[10] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .