Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3621-3631.doi: 10.16285/j.rsm.2020.0131

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on tunnel water inrush mechanism and simulation of seepage failure process

ZHOU Zong-qing1, 2, 3, 4, LI Li-ping1, 2, SHI Shao-shuai1, 2, LIU Cong1, GAO Cheng-lu1, TU Wen-feng1, WANG Mei-xia1   

  1. 1. School of Qilu Transportation, Shandong University, Jinan, Shandong 250002, China; 2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China; 3. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010 China; 4. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590 China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51709159, 51911530214), Shandong Provincial Key R&D Program of China (2019GSF111030), the CRSRI Open Research Program (CKWV2018468/KY) and the State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (MDPC201802).

Abstract: In view of the two typical modes of water inrush disasters, progressive fracturing of rock mass and seepage failure of filling structure, the mechanism of progressive fracturing of rock mass under the combined effects of dynamic disturbance, excavation unloading and high water pressure is described. The seepage failure mechanism of the variable strength-variable permeability-variable viscosity of the filling structure under osmotic pressure is also expounded. For the variable viscosity mechanism of water inrush caused by seepage failure of filling structure, a qualitative simulation study on the effect of fluid viscosity on seepage failure mechanism is carried out using the DEM-CFD coupled simulation method. The effects of fluid viscosity on the average contact force, flow rate (flow velocity), porosity, particle migration process, migration trajectory and critical hydraulic gradient of the simulation model are analyzed. The results show that the critical hydraulic gradient of fluid with low viscosity is smaller than that with high viscosity. In other words, seepage failure of filling structure is more likely to occur under the action of fluid flow with low viscosity; the average contact force is especially sensitive to the response of critical value of the hydraulic gradient, however it is difficult to be accurately reflected by the flow rate. Considering only the variable viscosity mechanism of water inrush due to seepage failure (regardless of the effect of increasing permeability), as the viscous medium flows into water, the fluid viscosity would increase, but the flow velocity would decrease, and the combined action of these two changes would actually hinder the development of seepage failure process. Finally, the phenomenon of water inrush process in engineering scale is simulated using DEM-CFD method, and the formation and expansion process of the dominant channel of water inrush is reproduced. The problems of parameter selection and quantitative analysis are identified to realize the simulation of water inrush mechanism.

Key words: water inrush disasters, mechanism, fluid viscosity, seepage failure, DEM-CFD, numerical simulation

CLC Number: 

  • TU 411
[1] YAO Jing-ming, XU Zi-wen, WANG Jian, WANG Lu, . Experimental study on roadway rockburst prevention by combined bolt - aluminum foam support [J]. Rock and Soil Mechanics, 2021, 42(3): 620-626.
[2] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[3] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[4] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[5] REN Yi, WU Shun-chuan, GAO Yong-tao, GAN Yi-xiong, . Effect of sensor calibration on moment tensor analysis of granite uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(2): 451-461.
[6] YANG Chun-he, ZHANG Chao, LI Quan-ming, YU Yu-zhen, MA Chang-kun, DUAN Zhi-jie, . Disaster mechanism and prevention methods of large-scale high tailings dam [J]. Rock and Soil Mechanics, 2021, 42(1): 1-17.
[7] WANG Dong-xing, CHEN Zheng-guang, . Mechanical properties and micro-mechanisms of magnesium oxychloride cement solidified sludge [J]. Rock and Soil Mechanics, 2021, 42(1): 77-85.
[8] JIN Ai-bing, CHEN Shuai-jun, ZHAO An-yu, SUN Hao, ZHANG Yu-shuai, . Numerical simulation of open-pit mine slope based on unmanned aerial vehicle photogrammetry [J]. Rock and Soil Mechanics, 2021, 42(1): 255-264.
[9] LI Jun, ZHAI Wen-bao, CHEN Zhao-wei, LIU Gong-hui, ZHOU Ying-cao, . Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element [J]. Rock and Soil Mechanics, 2021, 42(1): 265-279.
[10] YANG Kuo-yu, CHEN Cong-xin, XIA Kai-zong, SONG Xu-gen, ZHANG Wei, ZHANG Chu-qiang, WANG Tian-long, . Fault effect on the failure mechanism of surrounding rock in metal mine roadway by caving method [J]. Rock and Soil Mechanics, 2020, 41(S1): 279-289.
[11] XUE Ya-dong, ZHOU Jie, ZHAO Feng, LI Xing. Rock breaking mechanism of TBM cutter based on MatDEM [J]. Rock and Soil Mechanics, 2020, 41(S1): 337-346.
[12] MENG Min-qiang, WANG Lei, JIANG Xiang, WANG Cheng-gui, LIU Han-long, XIAO Yang, . Single-particle crushing test and numerical simulation of coarse grained soil based on size effect [J]. Rock and Soil Mechanics, 2020, 41(9): 2953-2962.
[13] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[14] WANG Ming-nian, JIANG Yong-tao, YU Li, DONG Yu-cang, DUAN Ru-yu, . Analytical solution of startup critical hydraulic gradient of fine particles migration in sandy soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2515-2524.
[15] YUE Jian-yong. In situ measurement and numerical simulation for the environmental vibration induced by urban subway transit [J]. Rock and Soil Mechanics, 2020, 41(8): 2756-2764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GUO Jun-hui, CHEN Wei-guo, ZHANG Bin. Research on creep property of geogrids at a low temperature[J]. , 2009, 30(10): 3009 -3012 .
[2] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[3] LIU Yu-cheng,ZHUANG Yan-hua. Model for dynamic process of ground surface subsidence due to underground mining[J]. , 2009, 30(11): 3406 -3410 .
[4] ZHANG Bo,LI Shu-cai,YANG Xue-ying,SUN Guo-fu,GE Yan-hui. Study of three dimensional viscoelastic medium artificial boundary[J]. , 2009, 30(11): 3469 -3475 .
[5] WANG Fei,WANG Yuan,NI Xiao-dong. Analysis of random characteristics of seepage field by stochastic finite element method[J]. , 2009, 30(11): 3539 -3542 .
[6] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[7] LI Jian-jun, HUANG Mao-song, WANG Wei-dong, CHEN Zheng. Analysis of uplift capacity of long enlarged-base pile in soft soil ground[J]. , 2009, 30(9): 2643 -2650 .
[8] DING Yu, WANG Quan-cai, HE Si-ming. Loading transfer mechanism of dispersion-type tensile cables along anchoring section[J]. , 2010, 31(2): 599 -603 .
[9] LIU Xue-zhu,CHEN Guo-xing. Effective stress path and failure pattern of Nanjing fine sand with flake-shape structure under vibrating load of rail transit[J]. , 2010, 31(3): 719 -726 .
[10] JIANG Ji-wei,XIANG Wei,TANG Hui-ming,ZENG Bin,HUANG Ling. Stability prediction of Dagouwan landslide in Dongping reservoir at limit water level[J]. , 2010, 31(3): 805 -810 .