Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (2): 581-592.doi: 10.16285/j.rsm.2020.0584

• Numerical Analysis • Previous Articles    

Study on the effect of inhomogeneous bedding plane on the mechanical properties of uniaxial compression of layered rock mass

WANG Xu-yi, HUANG Shu-ling, DING Xiu-li, ZHOU Huo-ming   

  1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2020-05-11 Revised:2020-11-13 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51539002,51779018) and the Basic Research Fund for Central Research Institutes of Public Causes (CKSF2019434/YT).

Abstract: The inhomogeneity of layered rock mass is mainly contributed by the inhomogeneity of bedrock and the inhomogeneity of bedding plane joints. It is important to consider the different homogeneity of bedrock and bedding plane joints. Therefore, this paper combines the WLPB model and the WSJ model to characterize the inhomogeneity of bedrock and bedding plane joints, respectively. We put forward a new theory and calculation method of micro-inhomogeneous contact mechanics model of bedded rock mass, and analyze the deformation characteristics, failure modes and micro-evolution laws of bedded rock samples under uniaxial compression. The results show that the elastic modulus, peak strength and failure mode of layered rock samples present obvious anisotropic characteristics, which are in general consistent with the laws of laboratory tests. It demonstrates the rationality and adaptability of the developed inhomogeneous microcosmic contact model of layered rock mass. When the mechanical behavior of layered rock mass is controlled by the bedding plane, the inhomogeneity of bedding plane becomes an important factor affecting the macromechanical characteristics of layered rock mass. When the bedding plane plays a controlling role, the influence of bedding plane spacing is not obvious on the peak strength of layered rock samples, but it is obvious on the deformation characteristics of rock samples. The paper reveals the micro fracture mechanism and transformation law controlled by the inhomogeneity of bedding plane of layered rock mass with different inclination angles under uniaxial compression.

Key words: layered rock masses, discrete element method, WLPB model, WSJ model, inhomogeneity

CLC Number: 

  • TU 455
[1] CUI Wei, WEI Jie, ZHANG Gui-ke, LI Hong-bi, . Research on collapse characteristics of binary particle column based on discrete element simulation [J]. Rock and Soil Mechanics, 2021, 42(1): 280-290.
[2] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[3] YANG Ji-ming, ZHANG Xiao-yong, ZHANG Fu-you, ZENG Chao-feng, MEI Guo-xiong, . Mesoscopic study on bearing characteristics of pile foundation under pile-soil-cap combined interaction in sand [J]. Rock and Soil Mechanics, 2020, 41(7): 2271-2282.
[4] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[5] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[6] WU Qi-xin, YANG Zhong-xuan. Incremental behavior of granular soils: a strain response envelope perspective [J]. Rock and Soil Mechanics, 2020, 41(3): 915-922.
[7] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[8] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[9] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[10] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[11] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[12] XIAO Si-you, SU Li-jun, JIANG Yuan-jun, LI Cheng, LIU Zhen-yu, . Influence of slope angle on mechanical properties of dry granular flow impacting vertical retaining wall [J]. Rock and Soil Mechanics, 2019, 40(11): 4341-4351.
[13] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
[14] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[15] ZHAO Ting-ting, FENG Yun-tian, WANG Ming, WANG Yong,. Modified Greenwood-Williamson model based stochastic discrete element method for contact with surface roughness [J]. , 2018, 39(9): 3440-3452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[3] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[4] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[5] ZHAO Cheng-gang,CAI Guo-qing. Principle of generalized effective stress for unsaturated soils[J]. , 2009, 30(11): 3232 -3236 .
[6] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .
[7] ZHANG Wen-jie,CHEN Yun-min,QIU Zhan-hong. Laboratory and field tests on hydraulic properties of landfilled waste[J]. , 2009, 30(11): 3313 -3317 .
[8] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[9] LIU Yu-cheng,ZHUANG Yan-hua. Model for dynamic process of ground surface subsidence due to underground mining[J]. , 2009, 30(11): 3406 -3410 .
[10] JIA Qiang,ZHANG Xin,YING Hui-qing. Numerical analysis of settlement difference for pile foundation underpinning for constructing underground space[J]. , 2009, 30(11): 3500 -3504 .