Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1659-1668.doi: 10.16285/j.rsm.2020.1448

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental and numerical study of hydraulic properties of three-dimensional rough fracture networks based on 3D printing technology

HUANG Na1, JIANG Yu-jing2, CHENG Yuan-fang1, LIU Ri-cheng3   

  1. 1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; 2. School of Engineering, Nagasaki University, Nagasaki 8528521, Japan; 3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2020-09-24 Revised:2021-02-05 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51909269, 51991362) and the Major Basic Research Projects of Natural Science Foundation of Shandong Province(ZR2019ZD14).

Abstract: Estimation of geometrical and hydraulic properties of rock fracture networks is of great significance for underground engineering construction and environment safety. Flow tests were conducted for 3D printed fracture network specimens in this study, in which each fracture had different orientations, lengths, rough surfaces and heterogeneous apertures. A numerical procedure was developed to simulate the fluid flow through the fracture network with the same geometrical properties as the specimen. Effects of surface roughness, aperture, hydraulic gradient and flow direction on the fluid flow through fracture networks were systematically investigated. Results show that as the flow rate increases, the relationship between the pressure gradient and the flux through the fracture network transits from a linear relationship to a nonlinear one, and the nonlinear relationship can be well fitted by Forchheimer’s law. The critical hydraulic gradient in different flow directions ranges from 0.015 to 0.195. The ratio of the pressure drop induced by the inertia force to the total pressure drop increases with the increasing hydraulic gradient, while the rate of increase gradually decreases. When the hydraulic gradient is close to 1.0, the pressure drop induced by the inertial force accounts for 68.5% of the total pressure drop. The topology of the fracture network determines the overall connectivity of the model, and the heterogeneous aperture allows the fluid to preferentially flow through the channels with greater permeability and smaller resistance within the connected fractures. Therefore, the ratio of areas of the main flow channels to the total area of fracture planes is smaller than 41%. The permeability of fracture networks decreases with the increase of the surface roughness of the fracture, but the decrement is reduced by increasing the fracture aperture. This study provides reliable laboratorial and numerical methods to analyze flow properties through rough fracture networks.

Key words: rock mechanics, fracture network, 3D printing, fluid flow, surface roughness, aperture heterogeneity

CLC Number: 

  • TU 45
[1] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
[2] LIU Xue-wei, LIU Quan-sheng, WANG Zhi-qiang, LIU Bin, KANG Yong-shui, WANG Chuan-bing, . Step by step and combined supporting technique with steel grid frame for soft and fractured rock roadway [J]. Rock and Soil Mechanics, 2022, 43(S1): 469-478.
[3] HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, . Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics [J]. Rock and Soil Mechanics, 2022, 43(S1): 542-552.
[4] WANG Gang, SONG Lei-bo, LIU Xi-qi, BAO Chun-yan, LIN Man-qing, LIU Guang-jian, . Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite [J]. Rock and Soil Mechanics, 2022, 43(6): 1533-1545.
[5] TANG Xu-hai, XU Jing-jing, ZHANG Yi-heng, HE Qi, WANG Zheng-zhi, ZHANG Guo-ping, LIU Quan-sheng, . Determining mechanical parameters of asteroid rocks using NWA13618 meteorites and microscopic rock mechanics experiment [J]. Rock and Soil Mechanics, 2022, 43(5): 1157-1163.
[6] JIANG Yue, ZHOU Hui, LU Jing-jing, GAO Yang, . True triaxial test on hollow cylindrical sandstone [J]. Rock and Soil Mechanics, 2022, 43(4): 932-944.
[7] CHENG Tan, GUO Bao-hua, SUN Jie-hao, TIAN Shi-xuan, SUN Chong-xuan, CHEN Yan, . Establishment of constitutive relation of shear deformation for irregular joints in sandstone [J]. Rock and Soil Mechanics, 2022, 43(1): 51-64.
[8] JIANG Shui-hua, OUYANG Su, FENG Ze-wen, KANG Qing, HUANG Jin-song, YANG Zhi-gang, . Reliability analysis of jointed rock slopes using updated probability distributions of structural plane parameters [J]. Rock and Soil Mechanics, 2021, 42(9): 2589-2599.
[9] CUI Wei, WANG Li-xin, JIANG Zhi-an, WANG Chao, WANG Xiao-hua, ZHANG She-rong, . Numerical simulation of grouting process in rock mass with rough fracture network based on corrected cubic law [J]. Rock and Soil Mechanics, 2021, 42(8): 2250-2258.
[10] QI Fei-fei, ZHANG Ke, XIE Jian-bin, . Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology [J]. Rock and Soil Mechanics, 2021, 42(6): 1669-1680.
[11] WU Dong-yang, YU Li-yuan, SU Hai-jian, WU Jiang-yu, LIU Ri-cheng, ZHOU Jian. Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression [J]. Rock and Soil Mechanics, 2021, 42(6): 1681-1692.
[12] CHEN Xi, ZENG Ya-wu, . A new three-dimensional roughness metric based on Grasselli’s model [J]. Rock and Soil Mechanics, 2021, 42(3): 700-712.
[13] WANG Ben-xin, JIN Ai-bing, SUN Hao, WANG Shu-liang, . Study on fracture mechanism of specimens with 3D printed rough cross joints at different angles based on DIC [J]. Rock and Soil Mechanics, 2021, 42(2): 439-450.
[14] LIU Xiang-hua, ZHANG Ke, LI Na, QI Fei-fei, YE Jin-ming, . Quantitative identification of the failure behavior of the 3D printed rock-like specimen with one hole and two flaws [J]. Rock and Soil Mechanics, 2021, 42(11): 3017-3028.
[15] WANG Ben-xin, JIN Ai-bing, WANG Shu-liang, SUN Hao, . Mechanical characteristics and fracture mechanism of 3D printed rock samples with cross joints [J]. Rock and Soil Mechanics, 2021, 42(1): 39-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[2] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[3] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[4] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[5] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[6] SHI Dan-da, ZHOU Jian, JIA Min-cai, YANG Yong-xiang. Back analysis of parameters and long-term settlement prediction of harbor soft ground considering its creep behavior[J]. , 2009, 30(3): 746 -750 .
[7] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[8] DING Zhou-xiang,QIU Yu-liang,LI Tao. Spatial asymmetry of excess pore pressure during nonlinear consolidation with two-way drainage[J]. , 2012, 33(6): 1829 -1838 .
[9] TIAN Kan-liang , ZHANG Hui-li , MA Jun . Test study of loess structure based on static strength conditions[J]. , 2012, 33(7): 1993 -1999 .
[10] FEI Kang ,WANG Jun-jun ,CHEN Yi . A simplified method for analyzing soil arching effect in pile-supported embankments[J]. , 2012, 33(8): 2408 -2414 .