Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1601-1611.doi: 10.16285/j.rsm.2020.1515

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of high temperature on micro-structure and permeability of granite

DENG Shen-yuan1, JIANG Qing-hui1, SHANG Kai-wei3, JING Xiang-yang3, XIONG Feng2   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; 3. PowerChina Chengdu Engineering Co., Ltd., Chengdu, Sichuan 610072, China
  • Received:2020-10-10 Revised:2021-03-19 Online:2021-06-11 Published:2021-06-15
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China(51679173).

Abstract: High temperature can cause the thermal fracture of rock, which affects the permeability of rock. In order to investigate the effect of temperature on the microstructure and permeability of rock, the ultrasonic velocity, density and gas permeability of granite after thermal treatment at 50–800 ℃ were measured. With the aid of CT scanning technique, the microstructure of granite was extracted and reconstructed. The influence of variation of microstructure after thermal treatment on permeability was also discussed in detail. According to this, the applicability of the K-C model and its improved model at high temperatures was discussed and verified. Finally, combined with the pore fractal model, a temperature-permeability model of granite after thermal treatment was proposed. The results show that: 1) The change of the internal microstructure of granite can be observed obviously as temperature increases. Uneven thermal expansibility of minerals before 400 ℃ can contribute to generation of many small pores between rock particles, which constitutes the pore structure. As temperature increases, these pores expand rapidly and connect with each other, forming the pore-fracture network. 2) When the temperature of heat treatment is not higher than 600 ℃, the probability distribution curve of the shape factor of the internal granite microstructure is basically consistent. When the temperature is higher than 600 ℃, the peak value of the shape factor shifts to the left obviously, and the average shape factor decreases greatly. 3) In the stage of pores, the permeability of granite doesn’t change too much, which is around the value of 10?18 m2. In the stage of the pore-fracture network, the permeability of granite increases exponentially with the connection of fracture. The permeability of granite under 800 ℃ is 8×104 times of the normal atmospheric temperature condition. 4) According to the fitting results of porosity and permeability at 50–800 ℃ using four porosity-permeability models, Bayles model and Costa model are more reasonable to describe granite after thermal treatment, and the fitting results are higher than K-C model and S-R model. 5) When the temperature is lower than 600 ℃, there is basically no change in the shape of the internal microstructure of the granite, and the shape coefficient of K-C can be considered as a constant. This indicates that Bayles model and Costa model are applicable for granite when the temperature is lower than 600 ℃. 6) On the basis of Costa model, the temperature-permeability model of granite after thermal treatment is obtained by combining the pore fractal characteristic of high-temperature heated granite. The experimental data within the temperature range of 50–600 ℃ are used to verify the new model and the coefficient of determination of fitting result reaches 0.99.

Key words: thermal treatment, granite, three-dimensional micro-structure, permeability, porosity, modified Kozeny-Carman model

CLC Number: 

  • TU455
[1] JIANG Chang-bao, YU Tang, WEI Wen-hui, DUAN Min-ke, YANG Yang, WEI Cai, . Permeability evolution model of coal under loading and unloading stresses [J]. Rock and Soil Mechanics, 2022, 43(S1): 13-22.
[2] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[3] ZHANG Lei, TIAN Miao-miao, LU Shuo, LI Ming-xue, LI Jing-hua, . Analysis of permeability variation and stress sensitivity of liquid nitrogen fracturing coal with different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 107-116.
[4] WANG Yang, CHEN Wen-hua. Nonlinear temperature field of granite fracture tip induced by high natural environmental temperature based on fracture shape function [J]. Rock and Soil Mechanics, 2022, 43(S1): 267-274.
[5] PAN Zhen-hui, XIAO Tao, LI Ping, . Influences of compaction degree and molding water content on microstructure and hydraulic characteristics of compacted loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 357-366.
[6] HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, . Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics [J]. Rock and Soil Mechanics, 2022, 43(S1): 542-552.
[7] TANG Lian-sheng, WANG Hao, SUN Yin-lei, LIU Qi-xin, . Change of tensile strength of granite residual soil during drying and wetting [J]. Rock and Soil Mechanics, 2022, 43(7): 1749-1760.
[8] WANG Gang, SONG Lei-bo, LIU Xi-qi, BAO Chun-yan, LIN Man-qing, LIU Guang-jian, . Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite [J]. Rock and Soil Mechanics, 2022, 43(6): 1533-1545.
[9] MAO Yan-jun, CHEN Xi, FAN Chao-nan, GE Shao-cheng, LI Wen-pu, . Crack network evolution of water injection coal and rock mass by means of 3D reconstruction [J]. Rock and Soil Mechanics, 2022, 43(6): 1717-1726.
[10] ZHU Min, CHEN Xiang-sheng, ZHANG Guo-tao, PANG Xiao-chao, SU Dong, LIU Ji-qiang, . Parameter back-analysis of hardening soil model for granite residual soil and its engineering applications [J]. Rock and Soil Mechanics, 2022, 43(4): 1061-1072.
[11] ZHANG Hu-yuan, WANG Zhao-ming, ZHU Jiang-hong, ZHOU Guang-ping, . Hydraulic conductivity and anisotropy of hybrid buffer material blocks [J]. Rock and Soil Mechanics, 2022, 43(3): 573-581.
[12] WANG Hai-man, NI Wan-kui. Prediction model of saturated/unsaturated permeability coefficient of compacted loess with different dry densities [J]. Rock and Soil Mechanics, 2022, 43(3): 729-736.
[13] XUE Hui, SHU Biao, CHEN Jun-jie, LU Wei, HU Yong-peng, WANG Yi-min, ZENG Fan, HUANG Ruo-chen, . Mechanical properties of granite after reaction with ScCO2 at high temperature and high pressure [J]. Rock and Soil Mechanics, 2022, 43(2): 377-384.
[14] TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG Jin-chang, LUO Yu-long, ZHAN Mei-li. Study on permeability characteristics of sandstone considering pore compression sensitivity at different scales [J]. Rock and Soil Mechanics, 2022, 43(2): 405-415.
[15] TAN Xun, HE Xing-xing, CHEN Yi-jun, LIU Lei, WAN Yong, . Influence of physicochemical properties of aged sludge on the permeability of filter cake [J]. Rock and Soil Mechanics, 2022, 43(2): 479-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QI Le,SHI Jian-yong,CAO Quan. Method for calculating rational thickness of cushion in rigid pile composite ground[J]. , 2009, 30(11): 3423 -3428 .
[2] YU Jun, TONG Li-yuan, LIU Song-yu, TANG Jin-song. Simulation and analysis of controlling water in tunnel based on preferred plane theory[J]. , 2009, 30(12): 3825 -3830 .
[3] YANG Hui, CAO Ping, JIANG Xue-liang. Micromechanical model for equivalent crack propagation under chemical corrosion of water-rock interaction[J]. , 2010, 31(7): 2104 -2110 .
[4] LIU Qi,LU Yao-ru,ZHANG Feng-e,XIONG Kang-ning. Study of simulation experiment for carbonate rocks dissolution under hydrodynamic pressure[J]. , 2010, 31(S1): 96 -101 .
[5] ZHANG Peng, CHEN Jian-ping, QIU Dao-hong. Evaluation of tunnel surrounding rock quality with extenics based on rough set[J]. , 2009, 30(1): 246 -250 .
[6] LI Xiang,JIA Ming-tao,WANG Li-guan,BAI Yun-fei. Study of orefragment size prediction in block caving based on Monte Carlo stochastic simulation[J]. , 2009, 30(4): 1186 -1190 .
[7] YIN Sheng-bin, DING Hong-yan. Time series-projection pursuit regression model for predicting surface settlement during pit excavation[J]. , 2011, 32(2): 369 -374 .
[8] HUO min, CHEN Jian-bing, ZHANG jin-zhao. Foundation clearing test study of highway subgrade in patchy permafrost regions of Northeast China[J]. , 2009, 30(S2): 263 -268 .
[9] CAO Jia-wen ,PENG Zhen-bin ,PENG Wen-xiang ,HE Zhong-ming ,YIN Quan. Model test study of inflated anchors in sands[J]. , 2011, 32(7): 1957 -1962 .
[10] SUN Xiu-li , KONG Xian-jing , ZOU De-gao , LI Zhi-hua , ZHOU Tai-quan. Stress-strain-time relationship for municipal solid waste[J]. , 2011, 32(8): 2331 -2335 .