Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2207-2214.doi: 10.16285/j.rsm.2021.0118

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Vector sum analysis method for slope stability based on new main sliding trend direction

CHEN Dong, LI Hong-jun, ZHU Kai-bin   

  1. China Institute of Water Resources and Hydropower Research, Beijing 100048, China
  • Received:2021-01-20 Revised:2021-03-25 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Key Research and Development Project(2017YFC0404904)and the National Natural Science Foundation of China(51579033, 51509272).

Abstract: The key to solving the safety factor of the vector sum method lies in determining the real stress state and the main sliding trend direction of the slope. The safety factor obtained by the vector sum method is closely related to the real stress state of the slope and the final sliding trend direction. The existing vector sum method is mostly based on a single anti-slide force or sliding force to determine the main sliding trend direction of the landslide. However, since slope sliding is actually the result of the combined action of the anti-slide force and the sliding force, the combined action of the two needs to be considered in the definition of the main sliding trend direction. In this study, we take the whole landslide body as an analysis object and the main sliding trend direction is first determined based on the overall vector resultant direction of the external load of the isolation body, the normal force, and the ultimate anti-sliding force at the bottom of the sliding body. After that, the safety factor of the landslide body is determined by the definition of the safety factor of the vector sum method. Finally, with the theoretical derivation and verification of standard test questions, the most dangerous sliding surface position, safety factor, and main sliding trend direction derived based on the new main sliding trend direction are comparable with those of the conventional slope stability method. What’s more, the slope safety evaluation based on the new main sliding trend direction are more safe, and more convenient for engineers to take more targeted slope support strategies.

Key words: slope stability, vector sum method, safety factor, main sliding trend direction

CLC Number: 

  • TU 42
[1] LIU Hui, ZHENG Jun-jie, ZHANG Rong-jun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength [J]. Rock and Soil Mechanics, 2021, 42(6): 1529-1539.
[2] ZHANG Rui-huan, YE Shuai-hua, TAO Hui. Stability analysis of multistage homogeneous loess slopes by improved limit equilibrium method [J]. Rock and Soil Mechanics, 2021, 42(3): 813-825.
[3] ZHENG Hong, ZHANG Tan, WANG Qiu-sheng. One package of schemes for some difficult issues in finite element plasticity analysis [J]. Rock and Soil Mechanics, 2021, 42(2): 301-314.
[4] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[5] XIAO Ming-qing, XU Chen, . Discussion on stability analysis method of tunnel surrounding rock based on critical stable section [J]. Rock and Soil Mechanics, 2020, 41(5): 1690-1698.
[6] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[7] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[8] JIA Zhi-bo, TAO Lian-jin, SHI Ming. Stability analysis of prestressed anchor cable slope under seismic loads [J]. Rock and Soil Mechanics, 2020, 41(11): 3604-3612.
[9] AI Xiao-tao, WANG Guang-jin, ZHANG Chao, HU Bin, LIU Wen-lian, MA Hong-lin, CUI Bo, . Stability analysis of high dump with wide graded waste rock [J]. Rock and Soil Mechanics, 2020, 41(11): 3777-3788.
[10] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[11] WANG Wei, CHEN Guo-qing, ZHENG Shui-quan, ZHANG Guang-ze, WANG Dong, . Study on the vector sum method of slope considering tensile-shear progressive failure [J]. Rock and Soil Mechanics, 2019, 40(S1): 468-476.
[12] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[13] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[14] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[15] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .