Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (8): 2141-2150.doi: 10.16285/j.rsm.2021.0144

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite

QIAO Chen1, 2, WANG Yu1, 2, SONG Zheng-yang1, 2, LI Chang-hong1, 2, HOU Zhi-qiang1, 2   

  1. 1. Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-01-26 Revised:2021-03-29 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2018YFC0808402).

Abstract: The frost heaving pressure generated by water-ice phase change and volume expansion of saturated fractured rock mass in cold regions promotes the initiation and expansion of new fractures, and leads to further damage and deterioration of fractured rock mass. To reveal the frost heaving pressure degradation mechanism of fractured rock mass subjected to multiple freeze-thaw cycles, the repeated frost heaving pressure monitoring test was carried out on saturated fractured granite with different macroscopic fractures under different freezing temperatures. The evolution characteristics of cyclic frost heaving pressure and the effect of crack size, freezing temperature and the number of freeze-thaw cycle on the frost heaving pressure of saturated fractured granite were analyzed. The results show that the evolution characteristics of frost heaving pressure in single freeze-thaw cycle is similar, which can be roughly divided into five stages. As the number of freeze-thaw cycles increases, the peak frost heaving pressure decreases exponentially, and the amplitude of peak frost heaving pressure drop increases. The peak frost heaving pressure increases linearly with the increase of crack length. The smaller the crack width, the earlier the frost heaving pressure appears in the freezing and thawing stages. The lower the freezing temperature, the earlier the frost heaving pressure appears. The peak frost heaving pressure increases linearly with the decrease of temperature, and the effect of freezing temperature on the frost heaving pressure weakens with the increase of freeze-thaw cycles. As the freezing temperature decreases, the effect of crack size on the peak frost heaving pressure becomes more significant. The research results can provide reference for the theoretical calculation and numerical analysis on frost heaving pressure of fractured rock masses in cold regions.

Key words: frost heaving pressure, freeze-thaw cycles, fractured rock, evolution characteristics

CLC Number: 

  • TU 452
[1] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[2] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[3] SUN Jing, GONG Mao-sheng, XIONG Hong-qiang, GAN Lin-rui, . Experimental study of the effect of freeze-thaw cycles on dynamic characteristics of silty sand [J]. Rock and Soil Mechanics, 2020, 41(3): 747-754.
[4] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[5] ZHANG Jin-peng, LIU Li-min, LIU Chuan-xiao, SUN Dong-ling, SHAO Jun, LI Yang, . Research on mechanism of bolt-grouting reinforcement for deep fractured rock mass based on prestressed anchor and self-stress grouting [J]. Rock and Soil Mechanics, 2020, 41(11): 3651-3662.
[6] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[7] SONG Yong-jun, YANG Hui-min, ZHANG Lei-tao, REN Jian-xi. CT real-time monitoring on uniaxial damage of frozen red sandstone [J]. Rock and Soil Mechanics, 2019, 40(S1): 152-160.
[8] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[9] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[10] YAN Jian, HE Chuan, YAN Qi-xiang, XU Jin-hua, . In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel [J]. Rock and Soil Mechanics, 2019, 40(9): 3593-3602.
[11] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[12] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[13] LI Wei, WANG Zhe-chao, BI Li-ping, LIU Jie, . Representative elementary volume size for permeable property and equivalent permeability of fractured rock mass in radial flow configuration [J]. Rock and Soil Mechanics, 2019, 40(2): 720-727.
[14] LIU Yan-zhang, GUO Yun-lin , HUANG Shi-bing , CAI Yuan-tian , LI Kai-bing , WANG Liu-bao , LI Wei , . Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018, 39(S2): 62-71.
[15] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .