Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (11): 3069-3078.doi: 10.16285/j.rsm.2021.0261

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental studies on split mechanical properties and fracture evolution behavior of bedding sandstone after high-temperature treatment

XU Hao-chun1, 2, 3, JIN Ai-bing1, 2, ZHAO Yi-qing1, 2, WANG Ben-xin1, 2, WEI Li-chang1, 2   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, China; 3. School of Advanced Engineers, University of Science and Technology Beijing, Beijing, 100083, China
  • Received:2021-05-13 Revised:2021-08-03 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51674015, 51804018), the Fundamental Research Funds for the Central Universities (FRF-TP-19-026A1), the Student Research Training Program of USTB (20203000R) and the China Postdoctoral Science Foundation Project(2020M670138).

Abstract: The Brazilian test was conducted on sandstones containing vertical and horizontal laminations after 25 ℃ to 1 000 ℃ treatment. Digital imaging correlation (DIC) was used to record the evolution of the horizontal strain field of high-temperature bedding sandstone during the splitting process. Meanwhile, microscopic structural damage characteristics of samples after different temperatures treatment were investigated using scanning electron microscopy (SEM). The results show that: (1) The strain concentration of the bedding sandstone before splitting can be divided into two types: the strain concentration at both ends of the disk (≤400 ℃) and the strain concentration at the center of the disk (>400 ℃). (2) With the increase of temperature, the tensile strength of vertical and horizontal bedding sandstone first increases and then decreases and reaches the maximum at 200 ℃. With the increase of temperature at 600~1 000 ℃, the effect of bedding on the tensile strength gradually decreases. Temperature becomes the main factor affecting the tensile strength after a threshold temperature of 800~1 000 ℃. (3) The microstructure damage analysis shows that the sandstone matrix is mainly characterized by increased cracks and extended length after the lower temperature treatment, while the crystal is still intact. Also, after this treatment, both the number and size of pores in the bedding plane increase and more damage in bedding occurs. However, when the temperature is higher, the damage of matrix and bedding is very similar, which is the main reason for the variations in strain and strength of the sample after heat treatment.

Key words: high temperature, bedding sandstone, Brazilian test, digital image correlation technology, scanning electron microscopy

CLC Number: 

  • TU 451
[1] XUE Hui, SHU Biao, CHEN Jun-jie, LU Wei, HU Yong-peng, WANG Yi-min, ZENG Fan, HUANG Ruo-chen, . Mechanical properties of granite after reaction with ScCO2 at high temperature and high pressure [J]. Rock and Soil Mechanics, 2022, 43(2): 377-384.
[2] JIANG Hao-peng, JIANG An-nan, YANG Xiu-rong. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification [J]. Rock and Soil Mechanics, 2021, 42(7): 1894-1902.
[3] PING Qi, SU Hai-peng, MA Dong-dong, ZHANG Hao, ZHANG Chuan-liang, . Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments [J]. Rock and Soil Mechanics, 2021, 42(4): 932-942.
[4] YU Li, PENG Hai-wang, LI Guo-wei, ZHANG Yu, HAN Zi-hao, ZHU Han-zheng. Experimental study on granite under high temperature-water cooling cycle [J]. Rock and Soil Mechanics, 2021, 42(4): 1025-1035.
[5] SUN Wen-jin, JIN Ai-bing, WANG Shu-liang, ZHAO Yi-qing, WEI Li-chang, JIA Yu-chun, . Study on sandstone split mechanical properties under high temperature based on the DIC technology [J]. Rock and Soil Mechanics, 2021, 42(2): 511-518.
[6] LI Hao-ran, WANG Zi-heng, MENG Shi-rong, ZHAO Wei-gang, CHEN Feng, . Acoustic emission activity and damage evolution characteristics of marble under triaxial stress at high temperatures [J]. Rock and Soil Mechanics, 2021, 42(10): 2672-2682.
[7] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[8] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[9] SHI Dan-da, MAO Yi-yao, YANG Yong, YUAN Yuan, HAO Dong-xue, . Experimental study on the deformation characteristics of soils around uplift circular plate anchors using digital image correlation technology [J]. Rock and Soil Mechanics, 2020, 41(10): 3201-3213.
[10] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[11] TAN Yun-zhi, LI Hui, WANG Pei-rong, PENG Fan, FANG Yan-fen, . Hydro-mechanical performances of bentonite respond to heat-treated history [J]. Rock and Soil Mechanics, 2019, 40(2): 489-496.
[12] WEI Xiao-ming, GUO Li-jie , LI Chang-hong, ZHANG Li-xin, LUO Wen-chong, LIU Ren, . Study of space variation law of strength of high stage cemented backfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 45-52.
[13] ZENG Yan-jin, RONG Guan, PENG Jun, SHA Song, . Experimental study of crack propagation of marble after high temperature cycling [J]. , 2018, 39(S1): 220-226.
[14] YE Wan-jun, LI Chang-qing, YANG Geng-she, LIU Zhong-xiang, PENG Rui-qi. Scale effects of damage to loess structure under freezing and thawing conditio [J]. , 2018, 39(7): 2336-2343.
[15] TENG Jun-yang, TANG Jian-xin, ZHANG Chuang, . Experimental study on tensile strength of layered water-bearing shale [J]. , 2018, 39(4): 1317-1326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Hong-fei, CHENG Xiao-jun, GAO Pan, Zhou Xin-xin. Research on forward simulation of tunnel lining cavity GPR images[J]. , 2009, 30(9): 2810 -2814 .
[2] FAN Qing-lai, LUAN Mao-tian, LIU Zhan-ge. Numerical simulation of penetration resistance of T-bar penetrometer in soft clay[J]. , 2009, 30(9): 2850 -2854 .
[3] ZHANG An-kang,CHEN Shi-hai,DU Rong-qiang,WEI Hai-xia. Energy-based elastoplastic damage model for rock materials with strain rate effects[J]. , 2010, 31(S1): 207 -210 .
[4] WANG Xiao-jun, QU Yao-hui, WEI Yong-liang, YANG Yin-hai, DA Yi-zheng. Settlement observation and prediction research of test embankment in collapsible loess area along Zhengzhou-Xi'an passenger dedicated line[J]. , 2010, 31(S1): 220 -231 .
[5] CHEN Yu,CAO Ping,PU Cheng-zhi,LIU Ye-ke,LI Na. Experimental study of effect of water-rock interaction on micto-topography of rock surface[J]. , 2010, 31(11): 3452 -3458 .
[6] ZHAO Yan-xi, XU Wei-ya. Risk assessment of TBM construction for tunnels based on AHP and fuzzy synthetic evaluation[J]. , 2009, 30(3): 793 -798 .
[7] ZHANG Qi-yi, LUAN Mao-tian. Ultimate bearing capacity of strip footings on inhomogeneous soil foundation under combined loading[J]. , 2009, 30(5): 1281 -1286 .
[8] WANG Jun-qing, LI Jing, LI Qi, CHEN Li. Analysis of influence factors of high slope stability of loess: Taking the Baojixia Water Division Project for example[J]. , 2009, 30(7): 2114 -2118 .
[9] CHANG Lin-yue,WANG Jin-chang,ZHU Xiang-rong. An analytical solution of 1-D finite strain consolidation of saturated soft clay under multistep linear loading[J]. , 2009, 30(8): 2343 -2347 .
[10] GONG Yan-feng,ZHANG Jun-ru. Study of design methodology and application of tunnel single layer lining[J]. , 2011, 32(4): 1062 -1068 .