Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (11): 3147-3156.doi: 10.16285/j.rsm.2021.0340

• Numerical Analysis • Previous Articles     Next Articles

Nonlocal peridynamic method for porous media seepage simulation

MA Peng-fei, LI Shu-chen, WANG Xiu-wei, ZHOU Hui-ying, WANG Man-ling, ZHAO Yi-min   

  1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China
  • Received:2021-05-13 Revised:2021-08-18 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51879150, 41831278).

Abstract: Based on the establishment of peridynamic nonlocal porous media seepage model, several kernel functions reflecting the degree of nonlocal effect are introduced to improve the calculation accuracy, and the peridynamic permeability coefficients corresponding to different kernel functions are derived. In the two-dimensional seepage model, the Weibull-distributed permeability coefficient model and the fracture network seepage model are established to realize the heterogeneous seepage in porous media matrix and fracture, respectively, which make up for the shortage of classical peridynamic model that cannot well simulate the heterogeneous seepage in porous media such as rock and soil. Different kernel function models are tested in simulating one-dimensional seepage problem, and the influence of kernel functions on simulation result is analyzed. The results show that the improved model can well converge to the theoretical solution, and the polynomial kernel function has the highest convergence accuracy relative to other kernel functions. Then, the polynomial kernel function is introduced into the two-dimensional model, and the corresponding two-dimensional permeability coefficient is derived. The proposed heterogeneous seepage model is employed in the simulation of two-dimensional seepage in porous media with and without fracture, and the results show that the proposed model can well simulate the heterogeneous seepage process in rock materials. Therefore, the proposed heterogeneous seepage model has wide application prospect in porous media seepage simulation.

Key words: porous media, peridynamics, nonlocal method, seepage simulation

CLC Number: 

  • O 357
[1] LIN Dan-tong, HU Li-ming. Model tests on the transport behavior of phosphate-sorbed nano zero-valent iron in porous media [J]. Rock and Soil Mechanics, 2022, 43(2): 337-344.
[2] LU Qiao, YANG Zhi-chao, YANG Zhi-quan, YU Rong-xia, ZHU Ying-yan, YANG Yi, ZHANG Bi-hua, WANG Ren-chao, FANG Ying-chao, YU Dong-liang, LIU Hao, SU Jian-kun. Penetration grouting mechanism of Binham fluid considering diffusion paths [J]. Rock and Soil Mechanics, 2022, 43(2): 385-394.
[3] HE Wen-hai, WANG Tong. Dynamic porosity and related dynamic response characteristic of two-dimensional saturated soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2703-2711.
[4] HOU Xiao-ping, CHEN Sheng-hong. Simulation of variably-saturated flow in fractured porous media using composite element method [J]. Rock and Soil Mechanics, 2020, 41(4): 1437-1446.
[5] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[6] LI Zheng, GUO De-ping, ZHOU Xiao-ping, WANG Yun-teng, . Numerical simulation of crack propagation and coalescence using peridynamics [J]. Rock and Soil Mechanics, 2019, 40(12): 4711-4721.
[7] SHA Fei, LI Shu-cai, LIN Chun-jin, LIU Ren-tai, ZHANG Qing-song, YANG Lei, LI Zhao-feng. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media [J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269.
[8] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[9] RAO Deng-yu, BAI Bing, CHEN Pei-pei, . Simulation of hydro-thermal coupling with phase-change in unsaturated porous media by SPH method [J]. Rock and Soil Mechanics, 2018, 39(12): 4527-4536.
[10] YANG Bin, XU Zeng-he, YANG Tian-hong, YANG Xin, SHI Wen-hao, . Experimental study of non-linear water flow through unconsolidated porous media under condition of high hydraulic gradient [J]. , 2018, 39(11): 4017-4024.
[11] LIU Bao, SU Qian, LI Ting, GUI Bo,. Analysis of dynamic response of saturated porous media by moving element method [J]. , 2017, 38(7): 2071-2079.
[12] ZHANG Peng-yuan, BAI Bing, JIANG Si-chen. Coupled effects of hydrodynamic forces and pore structure on suspended particle transport and deposition in a saturated porous medium [J]. , 2016, 37(5): 1307-1316.
[13] CHAI Hua-you, LI Tian-bin, ZHANG Dian-ji, CHEN Elton J., WU Qiao-yun, CHAI Xiu-wei,. Effect of surface permeability of saturated porous media on behaviour of surface waves using thin layer method [J]. , 2016, 37(12): 3371-3379.
[14] XIA Wei , FU Wen-xi , ZHAO Min , ZHOU Yong,. Theoretical analysis and experiment for the seepage of a combinational fractured-vuggy-porous geological media [J]. , 2016, 37(11): 3175-3183.
[15] SHEN Lin-fang , WANG Zhi-liang , LI Shao-jun,. Numerical simulation for mesoscopic seepage field of soil based on lattice Boltzmann method at REV scale [J]. , 2015, 36(S2): 689-694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[5] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[6] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[7] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[8] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[9] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .
[10] JIN Jie-fang , LI Xi-bing , YIN Zhi-qiang , ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J]. , 2011, 32(5): 1385 -1393 .