Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (11): 3157-3168.doi: 10.16285/j.rsm.2021.0464

• Numerical Analysis • Previous Articles     Next Articles

Reliability analysis of slope and random response of anti-sliding pile considering spatial variability of rock mass properties

ZHANG Wen-gang1, 2, 3, WANG Qi2, CHEN Fu-yong2, CHEN Long-long2, WANG Lu-qi2, WANG Lin2, ZHANG Yan-mei4, WANG Yu-qi5, ZHU Xing6   

  1. 1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, Chongqing 400045, China 4. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China; 5. China Railway 19th Bureau Group Sixth Engineering Co. Ltd, Wuxi, Jiangsu 214028, China; 6. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2021-05-13 Revised:2021-08-18 Online:2021-11-11 Published:2021-11-12
  • Supported by:
    This work was supported by the National Key R&D Program of China (2019YFC1509605), the Program of China Scholarships Council (201906050026) and the National Natural Science Foundation of China (51778092).

Abstract: In the reliability analysis of slope stability, the deterministic analysis method is usually used to calculate the safety factor to evaluate the stability of slope. However, the inherent spatial variability of rock mass properties cannot be considered and described adequately in traditional deterministic method, resulting in the inaccurate calculation of slope failure probability. Based on Hoek-Brown criterion and random finite difference method (RFDM), the reliability analysis of slope stability and random response of pile are discussed in this paper considering spatial variability of rock mass. The uniaxial compressive strength and material constant for the intact rock are regarded as random field variables and geological strength index GSI is assumed to be a random variable. The results show that the spatial variability of rock mass parameters has a significant effect on slope failure probability and pile response. Ignoring the spatial variability of rock mass parameters will overestimate slope failure probability and the mean value of the maximum bending moment of anti-slide pile, and underestimate the mean value of displacement at pile head. The results can provide design guidance for slope reinforcement as well as layout optimization of anti-sliding piles.

Key words: reliability assessment of slopes, spatial variability, Hoek-Brown criterion, random finite difference method (RFDM), random response

CLC Number: 

  • TU 473
[1] LIU Hui, ZHENG Jun-jie, ZHANG Rong-jun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength [J]. Rock and Soil Mechanics, 2021, 42(6): 1529-1539.
[2] ZHANG Wen-gang, WANG Qi, LIU Han-long, CHEN Fu-yong, . Influence of rock mass spatial variability on probability of tunnel roof wedge failure [J]. Rock and Soil Mechanics, 2021, 42(5): 1462-1472.
[3] SUN Zhi-hao, TAN Xiao-hui, SUN Zhi-bin, LIN Xin, YAO Yu-chuan, . Reliability of spatially variable earth slopes based on the upper bound analysis [J]. Rock and Soil Mechanics, 2021, 42(12): 3397-3406.
[4] WANG Chuan, LENG Xian-lun, LI Hai-lun, LI Gang, . Probabilistic stability analysis of underground caverns considering spatial variation of joint distribution [J]. Rock and Soil Mechanics, 2021, 42(1): 224-232.
[5] JIANG Shui-hua, LIU Yuan, ZHANG Hao-long, HUANG Fa-ming, HUANG Jin-song, . Quantitatively evaluating the effects of prior probability distribution and likelihood function models on slope reliability assessment [J]. Rock and Soil Mechanics, 2020, 41(9): 3087-3097.
[6] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[7] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[8] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2020, 41(3): 939-951.
[9] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[10] FEI Suo-zhu, TAN Xiao-hui, SUN Zhi-hao, DU Lin-feng. Analysis of autocorrelation distance of soil based on microstructure simulation [J]. Rock and Soil Mechanics, 2019, 40(12): 4751-4758.
[11] REN Jin-lan, CHEN Xi, WANG Dong-yong, LÜ Yan-nan. Instantaneous linearization strength reduction technique for generalized Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2019, 40(12): 4865-4872.
[12] CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, HUANG Jue-hao, . Face stability analysis for a shield tunnel considering spatial variability of shear strength in sand [J]. , 2018, 39(8): 3047-3054.
[13] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[14] JIANG Shui-hua, ZENG Shao-hui, YANG Jian-hua, YAO Chi, HUANG Jin-song, ZHOU Chuang-bing,. Slope reliability analysis by simulation of non-stationary random field of undrained shear strength [J]. , 2018, 39(3): 1071-1081.
[15] TIAN Mi, ZHANG Fan, LI Li-hua, . Comparative study on the quantitative analysis methods of inherent spatial variability of soil properties based on indirect test data [J]. Rock and Soil Mechanics, 2018, 39(12): 4673-4680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] JIANG Zheng-wei, PENG Jian-bing, WANG Qi-yao. Adverse geological problems and countermeasure of Xi’an Metro Line 3[J]. , 2010, 31(S2): 317 -321 .
[7] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[8] LI Xing-gao, LIU Wei-ning. Discussion on computing water and earth pressures on retaining wall separately[J]. , 2009, 30(2): 419 -424 .
[9] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .
[10] ZHOU Chun-mei, ZHANG Ze-jun, XU Da-jie, WANG Sheng-wei, LI Xian-fu. Research on numerical simulation of paleo-tectonic stress fields and hazard prediction[J]. , 2009, 30(7): 2141 -2146 .