Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (3): 591-601.doi: 10.16285/j.rsm.2021.0827

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experiment on Interaction of High Performance Concrete Pile-Soil in IAJBs

HUANG Fu-yun1, ZHOU Zhi-ming1, ZHUANG Yi-zhou2, LIU Fan1, LIU Ming-qi1   

  1. 1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; 2. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
  • Received:2021-06-02 Revised:2022-01-04 Online:2022-03-22 Published:2022-03-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51578161, 51778147), the Transportation Science and Technology Project of Fujian Province(201905) and the Research and Development Project of Fujian Residential Construction Industry(2022-K-6).

Abstract: High-performance concrete (ECC and UHPC) pile foundations have the advantages of excellent crack resistance and high bearing capacity, which can better meet the longitudinal deformation of piles in integral abutment jointless bridges (IAJBs). Low-cycle reciprocating pseudo-static tests were carried out on interaction of high-performance concrete pile-soil. The failure characteristics, crack resistance and bearing capacity of the pile were obtained. The distribution laws of pile strain, pile deformation and pile side soil resistance were analyzed and compared with the reinforced concrete (RC) pile. Meanwhile, the usability of commonly used codes were discussed. Some findings were as follows. ECC and UHPC materials can significantly reduce the damage of the pile foundation, increase the horizontal bearing capacity and crack resistance compared to RC. The damage position of the high-performance concrete pile is deeper, the effective pile length of the pile is longer, and the seismic performance is better. In special, the ECC pile has the strongest anti-cracking ability, its cracking displacement and cracking load can reach 15 mm and 5.8 kN, respectively. The deformation of high-performance concrete piles continuously reduces along the buried depth, and approaches zero at 15 m and deeper. The soil resistance of pile side increases first and then decreases, the resistance and deformation of the pile bottom soil are both 0; the strain of the pile shaft is symmetrically distributed with an “olive” shape, and there is larger strain in the interval of 4D to 6D buried depth. Furthermore, both the “m” method and the new API standard method can estimate the high-performance concrete pile displacement better when the displacement of pile top is within 10 mm. When the displacement exceeds 10 mm, the “m” method is no longer applicable. Neither the “m” method nor the new API standard method can predict the bending moment of the high-performance concrete pile well, indicating poor applicability. The new API standard method is recommended for estimating soil resistance of pile side.

Key words: Bridge engineering, Integral abutment bridge, High performance concrete pile, Pile-soil interaction, Pseudo-static Experimental

CLC Number: 

  • TU 443.1
[1] HUANG Fu-yun, HE Ling-feng, SHAN Yu-lin, HU Chen-xi, ZHOU Zhi-ming, . Experiment on interaction of soil-abutment-RC pile in integral abutment jointless bridges (IAJBs) [J]. Rock and Soil Mechanics, 2021, 42(7): 1803-1814.
[2] ZHAO Hai-peng, LI Xue-you, WAN Jian-hong, ZHENG Xiang-zhi, LIU Si-wei, . Analysis of laterally-loaded piles embedded in multi-layered soils using efficient finite-element method [J]. Rock and Soil Mechanics, 2021, 42(7): 1995-2003.
[3] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[4] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[5] SHI Li, WANG Hui-ping, SUN Hong-lei, PAN Xiao-dong, . Approximate analytical solution on vibrations of saturated ground induced by pile foundations [J]. Rock and Soil Mechanics, 2019, 40(5): 1750-1760.
[6] ZHOU He-xiang, MA Jian-lin, ZHANG Kai, LUO Chao-yang, YANG Bai. Study of sinking resistance of large and deep caisson based on centrifugal model test [J]. Rock and Soil Mechanics, 2019, 40(10): 3969-3976.
[7] XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform [J]. , 2018, 39(5): 1901-1907.
[8] HUANG Ming, ZHANG Bing-qi, CHEN Fu-quan, XU De-xiang,. A new incremental load transfer model of pile-soil interaction based on disturbed state concept [J]. , 2017, 38(S1): 167-172.
[9] ZHANG Hao, SHI Ming-lei, GUO Yuan-cheng, LI Yong-hui,. Analysis of stress and displacement characteristics of bridge pile and pier adjacent to one-side loading [J]. , 2017, 38(9): 2683-2692.
[10] Ya-ru , DING Xuan-ming , LIU Han-long , LIU Yi,. Mechanical response of pile-soil interactions of X-section cast-in-place concrete piles to cross-sectional shape [J]. , 2015, 36(S2): 357-364.
[11] YANG Xiao, TANG Jie. Vertical vibration of single pile with transversal inertia effect in stratified saturated soil [J]. , 2013, 34(6): 1560-1566.
[12] ZHANG Ai-jun , MO Hai-hong , XIANG Wei . Effect of lateral soil movement modes on behavior of stabilizing piles [J]. , 2012, 33(9): 2719-2723.
[13] YANG Xiao, HE Guang-hui. Nonlinear analysis of single pile-soil system in lateral spreading liquefied soil [J]. , 2012, 33(7): 2189-2195.
[14] WANG You , LIU Jian-hua , WANG Xing-hua , CAI Jun-jun. Nonlinear finite element analysis of pile-soil interaction of bridge pile group foundation in soft soil stratum [J]. , 2012, 33(3): 945-951.
[15] LI Yong-bo, ZHANG Hong-ru, QUAN Ke-jiang, MA Zhong-hua. Experimental study of model pile foundations under lateral dynamic load in frozen and thawed soils [J]. , 2012, 33(2): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .