Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (3): 635-648.doi: 10.16285/j.rsm.2021.0947

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Wave propagation in anisotropic granular materials based on micromorphic continua

LIU Yang, YU Peng-qiang, XU Shuo   

  1. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-06-27 Revised:2021-12-15 Online:2022-03-22 Published:2022-03-22
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2017YFC0805300).

Abstract: Based on the granular micromechanical approach and energy conservation principle, an anisotropic micromorphic constitutive relationship has been obtained for granular materials. It is noted that the particle displacement induced by particle rotation has been ignored. Furthermore, the expressions of anisotropic constitutive tensors are derived through a recursive formula of the unit contact direction integral. On this basis, according to Hamilton’s principle, the motion balance equation and boundary conditions of the anisotropic granular material are derived, and the dispersion relationship of the plane wave can be obtained for the anisotropic granular material. Finally, a detailed parameter analysis is carried out on the dispersion relationship and the frequency band gap. The research shows that: (1) The proposed model predicts that there are three types of waves in the granular materials, which consists of three kinds of longitudinal waves, six kinds of transverse waves and three kinds of in-plane transverse shear waves. For the transverse isotropic condition, the larger the value of the anisotropic parameter a20 is, the higher the frequency of the longitudinal wave and the transverse wave are, and the lower the frequency of the in-plane transverse shear wave is. For the orthogonal anisotropy conditions, with the increase of the anisotropic parameter a22, the frequency of transverse waves corresponding to the kinematics related to the 2-direction increases, whereas the frequency of transverse waves corresponding to the kinematics related to the 3-direction decreases. However, the coefficient a22 has minor effects on the longitudinal wave. (2) The degree of fabric anisotropy has minor effects on the bandwidth of the transverse wave, but it has a greater effect on the bandwidth of the longitudinal wave: the increase of a20 reduces the bandwidth between acousto-optical waves, whereas the bandwidth between optical waves increases. When a20 is greater than 0.84, the band gap between acousto-optical waves disappears. In contrast, the increase of a22 increases the bandwidth between acoustic and optical waves, whereas the bandwidth between optical waves decreases. When simplified to consider the isotropic condition, the dispersion curves of the three types of waves predicted by the proposed model show a good agreement with other benchmark theories.

Key words: granular material, anisotropy, wave propagation, micromechanics, micromorphic

CLC Number: 

  • O343
[1] JIANG Zhong-ming, XIAO Zhe-zhen, TANG Dong, HE Guo-fu, XU Wei, . Prediction of water inflow in water-sealed oil storage caverns based on fracture seepage effect [J]. Rock and Soil Mechanics, 2022, 43(4): 1041-1047.
[2] SHU Jin-hui , MA Qiang, ZHOU Feng-xi, LI Qiang, . Propagation characteristics of P1 wave passing through wave impeding block in unsaturated soil [J]. Rock and Soil Mechanics, 2022, 43(4): 1135-1146.
[3] ZHANG Hu-yuan, WANG Zhao-ming, ZHU Jiang-hong, ZHOU Guang-ping, . Hydraulic conductivity and anisotropy of hybrid buffer material blocks [J]. Rock and Soil Mechanics, 2022, 43(3): 573-581.
[4] SONG Lei-bo, KANG Qian-qian, DU Shi-gui, ZHONG Zhen, WANG Gang, WANG Xing-kai, HAN Guan-sheng, ZHAO Jin-shuai, . Anisotropy mechanism of shear strength based on wear and shear failure evolution of asperities of joint surface [J]. Rock and Soil Mechanics, 2021, 42(9): 2331-2343.
[5] QUE Xiang-cheng, ZHU Zhen-de, NIU Zi-hao, HUANG Hao-nan, . Deformation and strength anisotropy of columnar jointed rock mass with different cross-sectional shapes [J]. Rock and Soil Mechanics, 2021, 42(9): 2416-2426.
[6] SHI Zhen-hao, HUANG Mao-song, NI Yu-ping, . Intergranular-strain based constitutive model for saturated clay with anisotropic small-strain stiffness [J]. Rock and Soil Mechanics, 2021, 42(4): 1036-1044.
[7] CHEN Xi, ZENG Ya-wu, . A new three-dimensional roughness metric based on Grasselli’s model [J]. Rock and Soil Mechanics, 2021, 42(3): 700-712.
[8] LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, . Mechanical properties and strength criterion of Zhanjiang structured clay in three-dimensional stress state [J]. Rock and Soil Mechanics, 2021, 42(11): 3090-3100.
[9] FENG Da-kuo, ZHANG Jian-min, . Effect of normal stress on cyclic simple-shear behavior of gravel-structure interface [J]. Rock and Soil Mechanics, 2021, 42(1): 18-26.
[10] JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun, . Investigation of strength properties of coarse granular material at different densities using large-scale true triaxial tests [J]. Rock and Soil Mechanics, 2020, 41(8): 2601-2608.
[11] ZOU Yu-xiong, MA Gang, LI Yi-Ao, CHEN Yuan, ZHOU Wei, QIU Huan-feng, . Impact of rotation resistance on fabric of granular materials [J]. Rock and Soil Mechanics, 2020, 41(8): 2829-2838.
[12] HONG Chen-jie, HUANG Man, XIA Cai-chu, LUO Zhan-you, DU Shi-gui, . Study of size effect on the anisotropic variation coefficient of rock joints [J]. Rock and Soil Mechanics, 2020, 41(6): 2098-2109.
[13] WU Qi-xin, YANG Zhong-xuan. Incremental behavior of granular soils: a strain response envelope perspective [J]. Rock and Soil Mechanics, 2020, 41(3): 915-922.
[14] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[15] JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun, ZHANG Chao, WEI You-xin, . Effects of stress state on mechanical properties of coarse granular material using large-scale true triaxial tests [J]. Rock and Soil Mechanics, 2020, 41(11): 3563-3572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .