Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (2): 549-562.doi: 10.16285/j.rsm.2021.0993

• Numerical Analysis • Previous Articles     Next Articles

Analysis of the influence of wetting expansion and sand mixing rate on the THM coupling process of hybrid buffer material

WEI Tian-yu1, 2, WANG Xu-hong3, LÜ Tao3, HU Da-wei1, 2, ZHOU Hui1, 2, HONG Wen4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. China Nuclear Power Engineering Co., Ltd., Beijing 100840, China; 4. Wuhan Electric Power Vocational and Technical College, Wuhan, Hubei 430000, China
  • Received:2021-07-05 Revised:2021-10-27 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2018YFC0809600, 2018YFC0809601), the National Natural Science Foundation of China (51779252), the Geological Survey Project of China Survey (DD20190128) and the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-STS-QYZD-174).

Abstract: The hybrid buffer material added with the auxiliary aggregate not only retains the material’s sealing and anti-seepage ability, but also overcomes the defect of low thermal conductivity and inferior construction performance of pure bentonite blocks. As an alternative for the buffer material of high-level radioactive waste repository, it is becoming a new research hotspot. Based on the previous research data and the permeation theory of unsaturated porous media, a 3D calculation model containing one tunnel and a single wellbore is established using COMSOL Multiphysics, which considering the wetting expansion of bentonite and the real-time change of material physical parameters (density, saturation, thermal conductivity, etc.). By simulating the THM coupling process of the hybrid buffer material (bentonite-sand mixture) in the barrier system for 100 years, the time evolution and spatial distribution of each physical quantity are analyzed, and the influences of wetting expansion and sand mixing rate on the evolution process of the barrier system are discussed. The temperature and saturation of the material in the system are related to the distance from the vitrified HLW and the rock wall. The stress in the tunnel and wellbore is mainly compressive stress, and the deformation tends to compress first and then expand. The wetting expansion of bentonite-based materials has little effect on temperature evolution, but it will slightly accelerate the saturation process and cause significant time evolution and regional distribution differences in the stress and strain of the material. The stress in the area close to the rock wall in the wellbore and roadway rises quickly, and significant vertical displacement occurs at the junction of the roadway floor and the wellbore. Increasing the mixing rate can reduce the surface temperature of the tank effectively, enhance the heat transfer capacity of the barrier system, reduce the maximum historical stress of the buffer material, and control the vertical displacement on the axis of the borehole. On the other side, it will also weaken the anti- seepage capability of the system.

Key words: high-level radioactive waste, barrier system, wetting expansion, hybrid buffer material, numerical simulation, multiphysics coupling

CLC Number: 

  • TU 592
[1] CHI Xiao-lou, YANG Ke, LIU Wen-jie, FU Qiang, WEI Zhen, . Study of caving pattern of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam [J]. Rock and Soil Mechanics, 2022, 43(5): 1391-1400.
[2] QIAO Ya-fei, TANG Jie, GU Yun, DING Wen-qi, . Evolution mode of lateral pressure on the trench wall and disturbance analysis during construction of super-deep diaphragm wall [J]. Rock and Soil Mechanics, 2022, 43(4): 1083-1092.
[3] ZHANG Hu-yuan, WANG Zhao-ming, ZHU Jiang-hong, ZHOU Guang-ping, . Hydraulic conductivity and anisotropy of hybrid buffer material blocks [J]. Rock and Soil Mechanics, 2022, 43(3): 573-581.
[4] HE Yong, HU Guang, ZHANG Zhao, LOU Wei, ZOU Yan-hong, LI Xing, ZHANG Ke-neng. Numerical simulation on the migration and transformation mechanism of hexavalent chromium in contaminated site [J]. Rock and Soil Mechanics, 2022, 43(2): 528-538.
[5] HOU Xiao-ping, FAN Heng-hui. Study on rainfall infiltration characteristics of unsaturated fractured soil based on COMSOL Multiphysics [J]. Rock and Soil Mechanics, 2022, 43(2): 563-572.
[6] MA Cheng-hao, ZHU Chang-qi, LIU Hai-feng, CUI Xiang, WANG Tian-min, JIANG Kai-fang, YI Ming-xing, . State-of-the-art review of research on the particle shape of soil [J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058.
[7] CUI Wei, WANG Li-xin, JIANG Zhi-an, WANG Chao, WANG Xiao-hua, ZHANG She-rong, . Numerical simulation of grouting process in rock mass with rough fracture network based on corrected cubic law [J]. Rock and Soil Mechanics, 2021, 42(8): 2250-2258.
[8] ZHU Chun, HE Man-chao, ZHANG Xiao-hu, TAO Zhi-gang, YIN Qian, LI Li-feng, . Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior [J]. Rock and Soil Mechanics, 2021, 42(7): 1911-1924.
[9] WANG Ying, ZHANG Hu-yuan, TONG Yan-mei, ZHOU Guang-ping, . Influence of joint sealing material on the sealing performance of the buffer block barrier [J]. Rock and Soil Mechanics, 2021, 42(6): 1648-1658.
[10] WANG Zhao-yao, LIU Hong-jun, YANG Qi, ZHAO Zhen, HU Rui-geng, . Local scour of large diameter monopile under combined waves and currents [J]. Rock and Soil Mechanics, 2021, 42(4): 1178-1185.
[11] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
[12] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[13] LI Hong-xing, FENG Shi-jin, HE Shao-hua, ZHANG Xiao-lei, SUN Da-ming, . Study on mechanical characteristics of a new PHC short pile foundation for solar power generation in sandy soil [J]. Rock and Soil Mechanics, 2021, 42(12): 3217-3226.
[14] WANG Dong-po, HE Qi-wei, LIU Yan-hui, WEN Ji-wei, LI wei, . Research on the energy dissipation mechanism of rockfall impacts on the improved rockfall attenuator barrier [J]. Rock and Soil Mechanics, 2021, 42(12): 3356-3365.
[15] MEI Jin-ling, CAO Hong, LUO Guan-yong, PAN Hong, . Extension and applicability analysis of a quasi-three-dimensional finite element model to simulate regional groundwater flow problems in multi-layered subsoils [J]. Rock and Soil Mechanics, 2021, 42(12): 3428-3439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .