Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (1): 181-194.doi: 10.16285/j.rsm.2021.1059

• Geotechnical Engineering • Previous Articles     Next Articles

Stability analysis and visualization of rock slope blocks based on coordinate projection method

GAO Bing-li1, LI Duo1, LI Lang2, CHEN Li-cheng3, YANG Zhi-fa4   

  1. 1. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. China Jikan Research Institute of Engineering Investigations and Design, Co. Ltd, Xi’an, Shaanxi 710043, China; 3. Suzhou FaceAll Technology Co. Ltd., Suzhou, Jiangsu 215124, China; 4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2021-07-12 Revised:2021-09-13 Online:2022-01-10 Published:2022-01-07
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2019YFC1509703) and the Key R & D Program of Shaanxi Province (2021ZDLGY07-08).

Abstract: Block collapse or sliding is one of the main failure modes of rock slope engineering. Namely, block stability analysis plays a key role in rock slope engineering. Taking the Shenxianju rock slope in Xianju County, Zhejiang Province as the research background, this paper mainly conducts the stability analysis and visualization of rock blocks. A new method for fitting structural planes and free faces is proposed based on the linear regression method and the non-uniform rational B-spline method. Then, based on the coordinate projection method, the method for calculating the stability coefficient of the single-sided sliding surface and double-sided sliding surface blocks is proposed. Finally, the unmanned aerial vehicle (UAV) measurement technology combined with the coordinate projection method is used to develop a CPG program using Matlab, which can be adopted in the stability analysis of planar polyhedron blocks and curved blocks in rock slope engineering. This program enables the spatial representation and visualization of structural planes an free faces and unstable blocks. Engineering practice shows that the new proposed method is effectively applicable to engineering geological disasters, such as rockfall and collapse. The results of program calculation are basically consistent with those of the coordinate projection block theory, demonstrating that this method is reliable and the developed CPG program is feasible. This method is of vital significance in practical engineering since it can greatly improve the efficiency of block stability analysis.

Key words: rock slope, coordinate projection, structural plane, block stability, visualization

CLC Number: 

  • TU 457
[1] JIANG Shui-hua, OUYANG Su, FENG Ze-wen, KANG Qing, HUANG Jin-song, YANG Zhi-gang, . Reliability analysis of jointed rock slopes using updated probability distributions of structural plane parameters [J]. Rock and Soil Mechanics, 2021, 42(9): 2589-2599.
[2] YIN Ming-lun, ZHANG Jin-xun, JIANG Yu-sheng, JIANG Hua, SHANG Xiao-xu, . Study of correction of the structural plane category based on the rock mass integrity coefficient characterized by the volumetric joint count [J]. Rock and Soil Mechanics, 2021, 42(4): 1133-1140.
[3] LI Jian, LIU Pei-rong, LIANG Zhuan-xin, WANG Xin-yu, WANG Guang-yin, . Three-dimensional geological modeling method of regular voxel splitting based on multi-source data fusion [J]. Rock and Soil Mechanics, 2021, 42(4): 1170-1177.
[4] WANG Hai-jun, LE Cheng-jun, TANG Lei, ZHAO Chu, LI Han-zhang, QI Hai-tang, . Three-point bending fracture characteristics of brittle solid with horizontal internal cracks based on 3D-ILC [J]. Rock and Soil Mechanics, 2021, 42(10): 2773-2784.
[5] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong. Effect of pore water pressure on shear creep characteristics of serrate structural plane [J]. Rock and Soil Mechanics, 2020, 41(9): 2901-2912.
[6] AN Cai-long, LIANG Ye, WANG Liang-qing, DENG Shan, SUN Zi-hao, FAN Bin-qiang, ZHENG Luo-bin. Three-dimensional optimization design for the direction angle of anchor cable reinforcement in wedge rock slope [J]. Rock and Soil Mechanics, 2020, 41(8): 2765-2772.
[7] ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, ZHANG Ling-fan, NIAN Geng-qian. Catastrophe analysis of open-pit slope stability under blasting load [J]. Rock and Soil Mechanics, 2020, 41(3): 849-857.
[8] JIA Bao-xin, WANG Kun, SUN Ao, ZHOU Lin-li, SUN Chuang, SU Li-juan, . Experimental study on propagation law of microseismic signal in layered rock mass containing goaf [J]. Rock and Soil Mechanics, 2020, 41(10): 3255-3265.
[9] LI Long-qi, HE Chuan, WANG Tao, ZHAO Rui-zhi, JU Neng-pan. Study on fracture development characteristics and marginal spectral entropy response of soft and hard interbedded slope with steep inclination subjected to strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(10): 3456-3464.
[10] ZHU Lei, HUANG Run-qiu, CHEN Guo-qing, YAN Ming, . Mechanical model and evolution of fracture system with a gentle dip angle in rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 53-62.
[11] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[12] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[13] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[14] YAN Zhi-xin, LONG Zhe, QU Wen-rui, ZHANG Sen, JIANG Ping, . The effect of shear on the anchorage interface of rock slope with weak layers under earthquake [J]. Rock and Soil Mechanics, 2019, 40(7): 2882-2890.
[15] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .