Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2115-2122.doi: 10.16285/j.rsm.2021.1830

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on permeability and consolidation of calcareous sand mixed with rubber fiber

ZHANG Xiao-yan1, 2, ZHANG Yi1, ZHANG Jin-xun2, WEI Kai-yuan1, WANG Ning1   

  1. 1. School of Mechanics & Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 2. Beijing Urban Construction Group Co., Ltd., Beijing 100088, China
  • Received:2021-11-01 Revised:2022-04-24 Online:2022-08-11 Published:2022-08-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52211530088,52178375) and the Fundamental Research Funds for the Central Universities (2022YQLJ03).

Abstract: Coral islands and reefs are always in a complex marine dynamic environment. Seepage deformation or even damage of foundation of embankment cofferdam, foundation pit and other structures on the island will increase the possibility of subsoil bearing capacity failure. In order to explore the permeability and consolidation of calcareous sand mixed with rubber fiber, constant head permeability test and consolidation test were used to study the permeability and consolidation deformation of calcareous sand with different fiber contents, and the control group containing fiber glass beads was set. Calcareous sand has extremely irregular particle shape, ultra-high non sphericity and abnormal rich edges and corners, further study was carried out by a high-speed dynamic image particle size analyzer to analyze the particle shape and size of the calcareous sand and glass bead. The test results show that the fiber content hardly affect the permeability of calcareous sand samples, but the permeability coefficient first increases and then decreases with the increase of fiber content in the glass beads containing fiber. To some extent, the addition of rubber fiber shortens the water passage in the calcareous sand sample. Calcareous sand sample has a pressure threshold of 800 kPa. When the pressure exceeds 800 kPa, the increase of compression modulus slows down. The e-lg p curve of the mixture sample with different fiber contents can be expressed by the Harris model. The material coefficient of the calcareous sand-rubber fiber mixture is C=5, and that of the glass bead-rubber fiber mixture is C=3. Meanwhile, there is a good linear relationship between material parameters a and b and fiber content.

Key words: calcareous sand, permeability coefficient, consolidation characteristics, rubber fiber

CLC Number: 

  • TU 432
[1] ZHANG Tao-lin, GENG Han-sheng, XU Hong-fa, MO Jia-quan, LIN Yi-fan, MA Lin-jian. Experimental study on calcareous sand grout material preparation and performance of consolidated solids [J]. Rock and Soil Mechanics, 2022, 43(S2): 327-336.
[2] ZENG Zhao-tian, LIANG Zhen, SUN Ling-yun, FU Hui-li, FAN Li-yun, PAN Bin, YU Hai-hao, . Experimental study on the influence factors of thermal conductivity of cement-bonded calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 88-96.
[3] SHEN Jia-wei, ZHOU Bo, FU Ru, KU Quan, WANG Hua-bin, . Experimental study on single particle crushing strength and patterns of calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 312-320.
[4] GAO Min, HE Shao-heng, XIA Tang-dai, DING Zhi, WANG Xin-gang, ZHANG Qiong-fang, . Particles breakage and shear strength characteristic of calcareous sand under complex stress path [J]. Rock and Soil Mechanics, 2022, 43(S1): 321-330.
[5] QIN Dong-lai, MENG Qing-shan, YAN Ke, QIN Qing-long, HUANG Xiao-fang, RAO Pei-sen, . Experimental study on particle size effect of shear strength and deformation of calcareous sand gravel [J]. Rock and Soil Mechanics, 2022, 43(S1): 331-338.
[6] PAN Zhen-hui, XIAO Tao, LI Ping, . Influences of compaction degree and molding water content on microstructure and hydraulic characteristics of compacted loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 357-366.
[7] HE Gui-cheng, XIE Yuan-hui, LI Yong-mei, LI Chun-guang, TANG Meng-yuan, ZHANG Zhi-jun, WU Ling-ling. Experimental study of impermeability of sandstone uranium ore by microbial cementation [J]. Rock and Soil Mechanics, 2022, 43(9): 2504-2514.
[8] CHAI Yuan, NIU Yong, LÜ Hai-bo, . Experimental study on vertical bearing characteristics of a single pile in cemented calcareous sand layers [J]. Rock and Soil Mechanics, 2022, 43(8): 2203-2212.
[9] CHEN Bin, DENG Jian, HU Jie-ming, ZHANG Jian-lin, ZHANG Tao, . Macroscopic and microscopic experimental study on fractal fragmentation characteristics of calcareous sand during one-dimensional compression creep [J]. Rock and Soil Mechanics, 2022, 43(7): 1781-1790.
[10] WANG Hai-man, NI Wan-kui. Prediction model of saturated/unsaturated permeability coefficient of compacted loess with different dry densities [J]. Rock and Soil Mechanics, 2022, 43(3): 729-736.
[11] HU Cong, LONG Zhi-lin, KUANG Du-min, GONG Zhao-mao, YU Piao-yi, XU Guo-bin. Approach to 3D reconstruction of calcareous sand using 2D images of multi-view [J]. Rock and Soil Mechanics, 2022, 43(3): 761-768.
[12] XIAO Yao, DENG Hua-feng, LI Jian-lin, CHENG Lei, ZHU Wen-xi. Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment [J]. Rock and Soil Mechanics, 2022, 43(2): 395-404.
[13] LIU Li, WU Yang, LI Xu, ZHAO Yu-xin, . Influence of compaction on hydraulic properties of widely-graded soil [J]. Rock and Soil Mechanics, 2021, 42(9): 2545-2555.
[14] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, . Experimental study on micro-erosion mechanism of cement stabilized calcareous sand under seawater environment [J]. Rock and Soil Mechanics, 2021, 42(7): 1871-1882.
[15] RAO Pei-sen, LI Dan , MENG Qing-shan, WANG Xin-zhi, FU Jin-xin, LEI Xue-wen, . Study on earth pressure distribution characteristics of calcareous sand foundation under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(6): 1579-1586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .