Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (11): 2933-2940.doi: 10.16285/j.rsm.2021.2193

• Fundamental Theroy and Experimental Research •     Next Articles

Analysis of interaction between fractional viscoelastic saturated soils and laterally loaded pile groups

AI Zhi-yong1, 2, GU Gan-lin1, 2, LI Pan-cong1, 2   

  1. 1. School of Civil Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering, Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2021-12-29 Revised:2022-07-13 Online:2022-11-11 Published:2022-11-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41672275).

Abstract: The Abel dashpot is introduced to improve the classical three-parameter Merchant model, and a fractional Merchant model which can better describe the viscoelastic characteristics of soils is obtained. With the help of finite element method, the pile group is discretized into single piles and pile elements. The total stiffness matrix equation of the pile group can be obtained by assembling the pile elements simulated by the Timoshenko beam model. According to the interaction equation between soils and the pile group, and the equilibrium condition and the compatibility condition of the pile cap, the matrix solution of the shear force at the top of the single pile and the displacement of the pile cap is deduced. Combined with the elastic-viscoelastic correspondence principle and the Laplace inverse transformation, the problem of the interaction between fractional viscoelastic saturated soils and laterally loaded pile groups is finally solved. Taking a set of creep test data as an example, this paper briefly introduces the specific method to obtain the viscoelastic parameters of the fractional model through the creep curve. The correctness of the proposed solution is verified by comparing with the published results and ABAQUS numerical examples. Additionally, several examples are designed to discuss the effects of soil’s viscoelasticity parameters on the stress and deformation of the pile group, which shows that with the development of soil’s rheology, the internal force gap between corner piles and central piles gradually shrinks and tends to be stable.

Key words: fractional merchant model, viscoelasticity, saturated soils, laterally loaded pile groups, interaction analysis

CLC Number: 

  • TU 473
[1] CHEN Yong, SU Jian, CAO Ling, WANG li, WANG Shi-mei, . Evolution law of the soil-water characteristic curve based on data mining method [J]. Rock and Soil Mechanics, 2022, 43(S2): 23-34.
[2] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
[3] ZHANG Wen-gang, GU Xin, LIU Han-long, ZHANG Qing, WANG Lin, WANG Lu-qi, . Probabilistic back analysis of soil parameters and displacement prediction of unsaturated slopes using Bayesian updating [J]. Rock and Soil Mechanics, 2022, 43(4): 1112-1122.
[4] HUANG Jia-sheng, WANG Lu-jun, LIU Yan-jing, WANG Xin-bo, ZHU Bin , . Time-dependent behaviour of thermal-hydro-mechanical coupling of gassy soils [J]. Rock and Soil Mechanics, 2021, 42(9): 2507-2517.
[5] LIU Zhang-rong, YE Wei-min, CUI Yu-jun, ZHU He-hua, WANG Qiong, CHEN Yong-gui, . Water retention curve model based on micro-pore filling and capillary condensation theories [J]. Rock and Soil Mechanics, 2021, 42(6): 1549-1556.
[6] CHEN Hao, HU Xiao-rong. Triple-shear failure criteria and experimental verification for unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(7): 2380-2388.
[7] SUN De-an, XUE Yao, WANG Lei, . Analysis of one-dimensional thermal consolidation of saturated soil considering heat conduction of semi-permeable drainage boundary under varying loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1465-1473.
[8] LI Xiao-xuan, LI Tao, LI Jian, ZHANG Tao. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(4): 1153-1160.
[9] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[10] LI De-jian, LIU Xiao-lin, HAN Chao, . Variable-order fractional damage creep model based on equivalent viscoelasticity for rock [J]. Rock and Soil Mechanics, 2020, 41(12): 3831-3839.
[11] TIAN Yi, WU Wen-bing, JIANG Guo-sheng, MEI Guo-xiong, XU Bao-jun, . One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary [J]. Rock and Soil Mechanics, 2019, 40(8): 3054-3061.
[12] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[13] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[14] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[15] ZHOU Bao-chun, KONG Ling-wei, MA Quan-guo, LUO Zheng-tao, ZHANG Yan-jun,. Effects of moisture and density states on unsaturated shear strength of compacted expansive soil [J]. , 2017, 38(S1): 240-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .