Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (11): 3117-3126.doi: 10.16285/j.rsm.2022.0460

• Geotechnical Engineering • Previous Articles     Next Articles

Experimental study on particle breakage and pavement performance of carbonaceous shale

CHANG Zhou1, ZHANG Liu-jun2, HUANG Ping-ming1, YAN Chang-gen1, JIA Zhuo-long1, XU He-qing1   

  1. 1. Highway School, Chang’ an University, Xi’ an, Shaanxi 710064, China; 2. CCCC First Highway Consultants Co., Ltd., Xi’an, Shaanxi 710075, China
  • Received:2022-04-07 Revised:2022-10-08 Online:2022-11-11 Published:2022-11-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42077265).

Abstract: To comprehensively evaluate the pavement performance and the particle breaking behavior of carbonaceous shale, the gradation change of carbonaceous shale during cyclic compaction is tested. According to the indoor compaction test, the influence of particle breakage on filler is described, and the best filling gradation is determined. The best gradation is selected for the wetting deformation test, and the variation law of the wetting deformation is analyzed from the perspective of particle breakage. Finally, the field filling effect of carbonaceous shale is verified. Three stages, i.e., structure adjustment, particle breakage, and compression deformation, are identified during the cyclic compaction of carbonaceous shale. The relatively stable gradation structure formed provides the basis for its use as filler. The formation mechanism of the maximum dry density of fillers is greatly affected by the changes in the contents of 20-40 mm and below 2 mm particles during the particle crushing process. The relative breakage rate of the sample increases linearly with the increase of the coarse grain content, the maximum dry density increases first and then decreases, and the optimal coarse grain content is about 70%. The wetting deformation is the macro embodiment of the fillers particle crushing. The relative breakage rate Br can be used to predict the wetting deformation of fillers when encountering water, and the strength decreases by about 40% after wetting deformation. The mathematical relationships between the relative breakage rate and the confining pressure, stress level are established. The on-site compaction test and settlement observation show that the best loose paving thickness of carbonaceous shale embankment is about 40 cm.

Key words: carbonaceous shale, pavement performance, particle breakage, compaction characteristics, wetting deformation, field compaction test

CLC Number: 

  • TU 522.1+2
[1] FENG Chen, LI Jiang-shan, LIU Jin-du, XUE Qiang, . Experimental study on the compaction characteristics and microstructure of arsenic and cadmium co-contaminated soil [J]. Rock and Soil Mechanics, 2022, 43(S2): 171-182.
[2] GAO Min, HE Shao-heng, XIA Tang-dai, DING Zhi, WANG Xin-gang, ZHANG Qiong-fang, . Particles breakage and shear strength characteristic of calcareous sand under complex stress path [J]. Rock and Soil Mechanics, 2022, 43(S1): 321-330.
[3] WANG Jia-lu, ZHANG Sheng, TONG Chen-xi, DAI Shao-heng, LI Zhang. Experimental study on the gradation transition matrix of dyed carbonate sands during particle breakage [J]. Rock and Soil Mechanics, 2022, 43(8): 2222-2232.
[4] LIU Xin-xi, LI Yu, FAN Zi-jian, LI Sheng-nan, WANG Wei-wei, DONG Peng, . Energy evolution and failure characteristics of single fissure carbonaceous shale under drying-wetting cycles [J]. Rock and Soil Mechanics, 2022, 43(7): 1761-1771.
[5] CHEN Bin, DENG Jian, HU Jie-ming, ZHANG Jian-lin, ZHANG Tao, . Macroscopic and microscopic experimental study on fractal fragmentation characteristics of calcareous sand during one-dimensional compression creep [J]. Rock and Soil Mechanics, 2022, 43(7): 1781-1790.
[6] YANG Kai-xuan, HOU Tian-shun. Influence of compaction test types on compaction characteristics of EPS particles light weight soil [J]. Rock and Soil Mechanics, 2020, 41(6): 1971-1982.
[7] CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, YE Yang-fan. Experimental study on maximum dry density of scaled coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(5): 1599-1604.
[8] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
[9] TU Yi-liang, LIU Xin-rong, REN Qing-yang, CHAI He-jun, WANG Jun-bao, YU Jia-yu, . Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate [J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928.
[10] WU Yang, CUI Jie, LI Neng, WANG Xing, WU Yi-hang, GUO Shu-yang, . Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea [J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191.
[11] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[12] JIE Yu-xin, ZHANG Yan-yi, YANG Guang-hua, . Calculation method of wet deformation of earth-rock materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 11-20.
[13] DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, YIN Yin, SUN Xun, . Experimental study of the characteristics of wetting deformation of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981.
[14] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[15] PENG Yu, DING Xuan-ming, XIAO Yang, CHU Jian, DENG Wei-ting, . Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method [J]. Rock and Soil Mechanics, 2019, 40(7): 2663-2672.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .