Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 728-740.doi: 10.16285/j.rsm.2022.0524

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Compression and permeability characteristics of expansive soil under drying-wetting-freezing-thawing cycles

ZHANG Ling-kai1, 2, CUI Zi-yan1, 2   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China; 2. Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
  • Received:2022-04-14 Accepted:2022-09-27 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the Xinjiang Uygur Autonomous Region Water Conservancy Science and Technology Special Fund Project(XSXJ-2023-22), the Natural Science Foundation of Xinjiang Uygur Autonomous Region Outstanding Youth Science Fund Project(2022D01E45) and the Xinjiang Uygur Autonomous Region Cold and Arid Region Water Resources and Ecological Water Conservancy Project Research Center (Academician Expert Workstation) Project (2022.C-001).

Abstract: The first phase of water supply project in northern Xinjiang crossed the expansive soil area, and the mechanical properties of expansive soil are seriously weakened after repeated drying-wetting-freezing-thawing cycles, which cause local shallow landslide and frost heave damage of the canal slope. To further explore the deterioration mechanism of expansive soil canal slope, the changes of compression and permeability indexes are analyzed from macro-, meso-, and micro-perspectives through the compression test, the permeability test, and the SEM microscopic scanning test under drying-wetting-freezing-thawing cycles. The overall compressibility of expansive soil increases with the increase of drying-wetting-freezing-thawing cycles, and its compression curve can be divided into pseudo-elastic section and pseudo-plastic section. With the increase in the number of cycles, the rebound index shows a fluctuation tendency. The compression index is exponentially positively correlated with the number of cycles, and it is linearly correlated with the meso-micro cracks. Under the action of drying-wetting-freezing-thawing cycle, clay particles form a loose temporary structure of 'aggregates-pores-filled particles', flocculation structure increases, and anisotropy decreases. When the soil sample is subjected to vertical pressure, the pore spacing of expansive soil decreases, and the compressibility is large. When the pressure exceeds the consolidation yield stress, the aggregate particles become flat, the polar angular frequency increases, the pores are compacted, and the compressibility is gradually stabilized. Three stages i.e., slow, rapid, and stable stages, are identified in variation of permeability coefficient in the cycle process. The permeability coefficient changes greatly in the fifth cycle, and gradually stabilizes after 7 cycles, which is positively correlated with the number of cycles and surface fracture rate. The grey correlation degrees between the permeability coefficient and microscopic parameters are greater than 0.65, and microscopic porosity is the most important influencing factor. Under cyclic action, the microscopic pores develop obviously and form new seepage channels. The permeability coefficient is linearly and positively correlated with the microscopic porosity.

Key words: drying-wetting-freezing-thawing cycles, expansive soil, compression test, permeability test, micro mechanism

CLC Number: 

  • TU411
[1] LIANG Jing-yu, SHEN Wan-tao, LU De-chun, QI Ji-lin, . Uniaxial compression test of frozen sand considering the effect of the deposition angle [J]. Rock and Soil Mechanics, 2023, 44(4): 1065-1074.
[2] YIN Fu-shun, LI Sa, LIU Xin, . Experimental study on single particle strength and compression properties of calcareous coarse sand [J]. Rock and Soil Mechanics, 2023, 44(4): 1120-1129.
[3] GAO Hao-dong, AN Ran, KONG Ling-wei, ZHANG Xian-wei, LEI Xue-wen, . Evolution characteristics of meso-cracks in expansive soil under desiccating conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 442-450.
[4] ZHUANG Xin-shan, ZHOU Rong, ZHOU Mu-kai, TAO Gao-liang, JIN He-yi. Influence of pore solution on cumulative deformation and damping ratio of expansive soil under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(S2): 1-10.
[5] LIU Si-hong, SHEN Chao-min, CHENG De-hu, ZHANG Cheng-bin, MAO Hang-yu, . Model test of expansive soil slope with soilbags during rainfall-insolation cycles [J]. Rock and Soil Mechanics, 2022, 43(S2): 35-42.
[6] CHEN Wei-le, XU Guo-ping, SONG Shen-you, FU Bai-yong, YU Jian-gang, SUN Miao-miao, DING Zhi, . Strength test and mechanical characteristics of weathered rock softened by water [J]. Rock and Soil Mechanics, 2022, 43(S1): 67-76.
[7] YU Cheng-cheng, LU Zheng, YAO Hai-lin, LIU Jie, ZHAN Yong-xiang, . Experimental study of modifying expansive soils using microbial induced calcite precipitation [J]. Rock and Soil Mechanics, 2022, 43(S1): 157-163.
[8] ZHOU Hui, SONG Ming, ZHANG Chuan-qing, YANG Fan-jie, LU Xin-jing, FANG Hou-guo, DENG Wei-jie, . Experimental study of influences of water on mechanical behaviors of argillaceous sandstone under tri-axial compression [J]. Rock and Soil Mechanics, 2022, 43(9): 2391-2398.
[9] LIU Guan-shi, ZHAO Shou-dao, MOU Zhi, MO Yan-kun, ZHAO Qing-song, . Experimental study of the influence of structure on the shrinkage characteristics of expansive soil [J]. Rock and Soil Mechanics, 2022, 43(7): 1772-1780.
[10] LI Xin-ming, JIA Ya-lei, WANG Zhi-liu, YIN Song. Strain rate effect of the shear mechanical properties of undisturbed expansive soil [J]. Rock and Soil Mechanics, 2022, 43(12): 3327-3334.
[11] QUE Xiang-cheng, ZHU Zhen-de, NIU Zi-hao, HUANG Hao-nan, . Deformation and strength anisotropy of columnar jointed rock mass with different cross-sectional shapes [J]. Rock and Soil Mechanics, 2021, 42(9): 2416-2426.
[12] ZHUANG Xin-shan, ZHOU Mu-kai, TAO Gao-liang, ZHOU Rong, PENG Cheng-hong, LIN Wan-feng. Experimental study of dynamic elastic modulus and damping ratio of improved expansive soil under cyclic loading by expanded polystyrene [J]. Rock and Soil Mechanics, 2021, 42(9): 2427-2436.
[13] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[14] ZHANG Xiao-jun, LI Xiao-cheng, LIU Guo-lei, LI Bao-yu, . Experimental study on the effect of local risk reduction of pressure relief hole for splitting [J]. Rock and Soil Mechanics, 2020, 41(S1): 171-178.
[15] SHANG Yong-hui, XU Lin-rong, CAI Yu, . Study on dynamic characteristics of cement-stabilized expansive soil subgrade of heavy-haul railway under immersed environment [J]. Rock and Soil Mechanics, 2020, 41(8): 2739-2745.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YU Xiao-jun,SHI Jian-yong,XU Yang-bin. Modelling disturbed state and anisotropy of natural soft clays[J]. , 2009, 30(11): 3307 -3312 .
[2] GAO Wei. Analysis of stability of rock slope based on ant colony clustering algorithm[J]. , 2009, 30(11): 3476 -3480 .
[3] XU Bin,YIN Zong-ze,LIU Shu-li. Experimental study of factors influencing expansive soil strength[J]. , 2011, 32(1): 44 -50 .
[4] DAI Ren-ping,GUO Xue-bin,GONG Quan-mei,PU Chuan-jin,ZHANG Zhi-cheng. SHPB test on blasting damage protection of tunnel surrounding rock[J]. , 2011, 32(1): 77 -83 .
[5] YANG Yang, YAO Hai-lin, LU Zheng. Model of subgrade soil responding to change of atmosphere under evaporation and its influential factors[J]. , 2009, 30(5): 1209 -1214 .
[6] DENG Ya-hong,XIA Tang-dai,PENG Jian-bing,LI Xi-an,HUANG Qiang-bing. Research on shear particle system method of natural frequency of horizontal layered soils[J]. , 2009, 30(8): 2489 -2494 .
[7] . [J]. , 2011, 32(7): 2236 -2240 .
[8] CHU Xi-hua. A generation method for numerical specimen of granular materials by sort of coordinates[J]. , 2011, 32(9): 2852 -2855 .
[9] WANG Zhong-fu , LIU Han-dong , JIA Jin-lu , HUANG Zhi-quan , JIANG Tong . Experimental study of vertical bearing capacity behavior of large-diameter bored cast-in-situ long pile[J]. , 2012, 33(9): 2663 -2670 .
[10] LIN Lu-sheng , JIANG Gang , BEI Shi-wei , LIU Zu-de . Statistical analysis method of taking value for shear strength parameters of soil mass[J]. , 2003, 24(2): 277 -280 .