Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (12): 3437-3452.doi: 10.16285/j.rsm.2022.0573

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Layered soft rock simulation based on uniaxial and triaxial tests and direct shear test

PAN Wen-tao1, YANG Wen-bo1, WU Fang-yin1, HE Chuan1, ZHAO Liang-liang1, YAO Ren-jie1, FU Jian-feng 2   

  1. 1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Sichuan Mianjiu Expressway Co., Ltd., Chengdu, Sichuan 610041, China
  • Received:2022-04-20 Revised:2022-08-01 Online:2022-12-28 Published:2023-01-05
  • Supported by:
    This work was supported by the Sichuan Transportation Science and Technology Project(2019ZL09).

Abstract: In order to explore the simulation method of layered soft rock in model experiment, relying on the indoor test results of samples selected from a layered soft rock tunnel of Jiuzhaigou-Mianyang Expressway, the optimal ratio of barite powder, quartz sand, gypsum powder, talc powder and water was determined by many tests to simulate soft rock matrix. The film with holes was used to simulate the adhesion of weak surface of bedding, and the porosity was determined by direct shear test. And direct shear and uniaxial and triaxial tests were carried out on the samples with different bedding angles and thickness to reflect the anisotropy. The optimal ratio of soft rock matrix simulation is 0.55:0.15:0.07:0.06:0.17. Barite powder plays a decisive role in strength and failure deformation. Barite content is too low for easy crushing and too high for producing top-to-bottom penetration cracks. The film with 30% porosity has the best effect on simulating bedding. The strength of soil sample changes in U-shape with the layer angle, and the strength decreases with the decrease of the thickness of layers (no less than 2 cm). In the direct shear test, the shear plane of 45º bedding is inclined to the direction of bedding, while the shear plane of 90º bedding leads to cracks and fractures on both sides of the shear plane. In uniaxial and triaxial results, for 0º bedding, small angle inclined cracks generate, for 45º bedding inclined cracks perpendicular to the bedding plane and secondary cracks arise, and for 90º bedding vertical splitting along bedding plane emerges. The optimal layer thickness is determined to be 3 cm after compared with the field results. The direct shear test of layer angles and thickness is consistent with the results of uniaxial and triaxial tests, revealing the process of pore compaction closure-elastic-plastic expansion crack failure-creep of soil samples.

Key words: layered soft rock simulation, bedding anisotropy, uniaxial and triaxial test, direct shear test, bedding number

CLC Number: 

  • TU457
[1] GAO Yao-hui, ZHANG Chun-sheng, SU Fang-sheng, QIU Shi-li, . Mechanism of stress-induced spalling of deep hard rocks under shear boundary condition [J]. Rock and Soil Mechanics, 2022, 43(4): 1103-1111.
[2] ZHOU Yuan , WEI Chang-fu, ZHOU Jia-zuo, CHEN Pan, WEI Hou-zhen, . Development and application of gas hydrate injection synthesis and direct shear test system [J]. Rock and Soil Mechanics, 2021, 42(8): 2311-2320.
[3] FAN Xiang, DENG Zhi-ying, CUI Zhi-meng, HE Zhong-ming, LIN Hang, . A new peak shear strength model for soft-hard joint [J]. Rock and Soil Mechanics, 2021, 42(7): 1861-1870.
[4] LIU Fei-yu, JIANG Huai, WANG Jun, . Experimental study on cyclic shear softening characteristics of gravel-geogrid interface [J]. Rock and Soil Mechanics, 2021, 42(6): 1485-1492.
[5] TU Yi-liang, LIU Xin-rong, REN Qing-yang, CHAI He-jun, WANG Jun-bao, YU Jia-yu, . Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate [J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928.
[6] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[7] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[8] CHAI Wei, LONG Zhi-lin, KUANG Du-min, CHEN Jia-min, YAN Chao-ping. Effect of shear rate on shear strength and deformation characteristics of calcareous sand in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(S1): 359-366.
[9] LI Wen-Xuan, BIAN Shi-hai , LI Guo-ying, WU Jun-jie, . Interface model of coarse-grained soils and its application in earth rock dam [J]. Rock and Soil Mechanics, 2019, 40(6): 2379-2388.
[10] CHEN Guo-qing, TANG Peng, LI Guang-ming, ZHANG Guang-ze, WANG Dong, . Analysis of acoustic emission frequency spectrum characteristics and main fracture precursor of rock bridge in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(5): 1649-1656.
[11] ZHOU Hui, CHENG Guang-tan, ZHU Yong, CHEN Jun, LU Jing-jing, CUI Guo-jian, YANG Pin-qing, . Experimental study of shear deformation characteristics of marble dentate joints [J]. Rock and Soil Mechanics, 2019, 40(3): 852-860.
[12] CUI Guo-jian, ZHANG Chuan-qing, LIU Li-peng, ZHOU Hui, CHENG Guang-tan,. Study of effect of shear velocity on mechanical characteristics of bolt-grout interface [J]. , 2018, 39(S1): 275-281.
[13] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[14] CHEN Chen, LENG Wu-ming, YANG Qi, JIN Zi-hao, NIE Ru-song, QIU Jun,. Experimental study of mechanical properties of concrete pile-slurry-sand interface [J]. , 2018, 39(7): 2461-2472.
[15] ZHAO Kun, CHEN Wei-zhong, ZHAO Wu-sheng, YANG Dian-sen,SONG Wan-peng, LI Can, MA Shao-sen, . Direct shear test and numerical simulation for mechanical characteristics of the contact surface between the lining and shock absorption layer in underground engineering [J]. , 2018, 39(7): 2662-2670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .