Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (1): 226-234.doi: 10.16285/j.rsm.2023.0088

• Rock and Soil Mechanics Excellence Forum • Previous Articles     Next Articles

Creep characteristics test of soil-rock mixture subjected to loading and dry-wet cycles

SUN Chen-feng1, 2, WANG Bu-xue-yan1, 2, QIAN Jian-gu1, 2, WANG Jia-chao1, 2, ZHANG Jia-feng3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Shanghai CAAC New Era Airport Design & Research Institute Co., Ltd., Shanghai 200335, China
  • Received:2023-01-30 Accepted:2023-04-19 Online:2024-01-10 Published:2024-01-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51238009) and the Fundamental Research Funds for the Central Universities (22120190220).

Abstract: The study focused on investigating the influence of dry density and load level on the wetting creep deformation of soil-rock mixture. A total of 9 groups of compression creep tests were conducted on the soil-rock mixture under a dry-wet cycle. The results revealed that the wetting creep deformation of the soil-rock mixture increased with higher load levels and decreased significantly with increasing dry density. However, as the dry density further increased, the decrease in wetting creep deformation became less pronounced. The relationship between wetting creep deformation and the logarithm of the number of dry-wet cycles followed a linear development pattern for the soil-rock mixture under the dry-wet cycle conditions. The initial wetting strain and wetting creep rate were found to have power function distribution relationships with the load level and dry density. Based on these findings, an empirical model for the dry-wet cycle creep behavior of the soil-rock mixture was proposed. This model takes into consideration different dry densities and load levels, providing a framework for predicting and understanding the creep deformation of the soil-rock mixture under such conditions.

Key words: filling soil, soil-rock mixture, dry-wet cycles, creep, dry density

CLC Number: 

  • TU411
[1] HUANG Feng, MI Ji-long, YANG Yong-hao, DONG Guang-fa, ZHANG Ban, LIU Xing-chen, . Morphological characteristics of hysteretic curves of soil-rock mixture under stepped axial cyclic loading [J]. Rock and Soil Mechanics, 2024, 45(3): 674-684.
[2] ZHANG Yong-gan, LU Yang, LIU Si-hong, TIAN Jin-bo, ZHANG Si-yu, FANG Bin-xin. Experimental study and mechanism exploration of soilbags for inhibiting frost heaving performance of expansive Soil [J]. Rock and Soil Mechanics, 2024, 45(3): 759-768.
[3] CAO Jian-jun, HU Bin, WANG Ze-qi, LI Jing, . Creep damage model of weak interlayer based on fractional order integral [J]. Rock and Soil Mechanics, 2024, 45(2): 454-464.
[4] HONG Yi, ZHENG Bo-wen, YAO Meng-hao, WANG Li-zhong, SUN Hai-quan, XU Dong, . Microstructure and one-dimensional compression characteristics of deep-sea diatomite [J]. Rock and Soil Mechanics, 2023, 44(S1): 268-276.
[5] CHENG Guang, FAN Wen, YU Ning-yu, JIANG Cheng-cheng, TAO Yi-quan, . Correlation between soil-water characteristics and microstructure of soil-rock mixture [J]. Rock and Soil Mechanics, 2023, 44(S1): 365-374.
[6] QU Ru, ZHU Chang-qi, LIU Hai-feng, WANG Tian-min, MA Cheng-hao, WANG Xing, . A comparative study of methods for determining boundary dry density of coral sand [J]. Rock and Soil Mechanics, 2023, 44(S1): 461-475.
[7] WU Guang-shui, TIAN Hui-hui, HAO Feng-fu, WANG Shu-qi, YANG Wen-zhou, ZHU Ting-mei, . Rapid prediction of the permeability coefficient for soil of different dry densities with NMR T2 distribution [J]. Rock and Soil Mechanics, 2023, 44(S1): 513-520.
[8] QI Tian, KONG Jian-jie, LIU Fei-yu. Effect of cyclic shear on interface characteristics of geogrid-soil-gravel mixture [J]. Rock and Soil Mechanics, 2023, 44(9): 2593-2602.
[9] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[10] HUANG Jian, DE Pu-rong, YAO Yang-ping, PENG Ren, QI Ji-lin, . A simplified algorithm for predicting creep settlement of high fill based on modified power law model [J]. Rock and Soil Mechanics, 2023, 44(7): 2095-2104.
[11] GAO Qi, CHEN Bao-guo, WU Sen, YUAN Shan, SUN Meng-yao. Long-term stress characteristics and load reduction effect of high-fill box culverts with EPS slabs [J]. Rock and Soil Mechanics, 2023, 44(7): 2151-2160.
[12] FAN Jin-yang, TANG Lu-xuan, CHEN Jie, YANG Zhen-yu, JIANG De-yi, . Creep fatigue constitutive model of salt rock based on a hardening parameter [J]. Rock and Soil Mechanics, 2023, 44(5): 1271-1282.
[13] GAO Yan, YU Jun-yuan, CHEN Qing, SHI Tian-gen, . Particle motion characteristics of dense sand during creep under lateral confinement [J]. Rock and Soil Mechanics, 2023, 44(5): 1385-1394.
[14] YANG Zhong-ping, LI Jin, LIU Hao-yu, ZHANG Yi-ming, LIU Xin-rong, . Influence of the block stone size on shear mechanical behavior of soil-rock mixture-bedrock interface [J]. Rock and Soil Mechanics, 2023, 44(4): 965-974.
[15] SUN Xiao-ming, JIANG Ming, WANG Xin-bo, ZANG Jin-cheng, GAO Xiang, MIAO Cheng-yu, . Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine [J]. Rock and Soil Mechanics, 2023, 44(3): 624-636.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .