Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (1): 117-130.doi: 10.16285/j.rsm.2023.0107

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Low sensitivity research and engineering application of roadway butterfly failure strength criterion

LIU Hong-tao1, 2, HAN Zi-jun1, 2, LIU Qin-yu1, 2, CHEN Zi-han1, 2, HAN Zhou1, 2, ZHANG Hong-kai1, YANG Yong-song1   

  1. 1. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 2. Roadway Support and Disaster Prevention Coal Industry Engineering Research Center, Beijing 100083, China
  • Received:2023-02-02 Accepted:2023-06-17 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(U22A20165,51774288,52004289)and the Fundamental Research Funds for the Central Universities (2022XJNY01).

Abstract: The morphology of the plastic zone of roadway surrounding rock has an important influence on the failure mode and degree of roadway. In order to explore the evolution of plastic zone morphology under three-dimensional stress field, this paper derives the axial stress expression based on elastic mechanics, and determines the approximate solution method of 3D plastic zone under 3D strength criterion according to the idea of solving the boundary equation of butterfly plastic zone. By determining the surrounding rock stress loading scheme through equal spherical stress p and equal deviatoric stress q with different Lode angles θσ , the  morphological evolution of the plastic zone under different 3D strength criteria is studied in depth, and the low sensitivity of the criterion for butterfly failure is demonstrated. Based on the butterfly failure theory, the asymmetric deformation failure mechanism and control technology of 160206 return roadway in Yangchangwan are analyzed. The results show that: 1) Under the same p, q and different θσ   stress loading conditions, the morphology of the plastic zone under the five strength criteria shows the evolution patterns of round, oval and butterfly shapes, and the morphology of the plastic zone of surrounding rock is basically consistent for each strength criterion under the same θσ  . 2) Under the loading scheme with same stress state and different stress directions, the plastic zone morphology of surrounding rock varies greatly. The shape of the plastic zone is largely determined by the horizontal lateral pressure ratio. The axial lateral pressure has a greater influence on the size of the plastic zone, but less influence on the shape of the plastic zone. 3) Under the influence of superimposed mining, the roof of 160206 return roadway presents asymmetric large deformation and failure. Based on the support idea of butterfly plastic zone, the collaborative support technology of ' asymmetric anchor cable + advanced unit support + borehole pressure relief ' has been applied, and good supporting effect has been achieved.

Key words: plastic zone boundary, butterfly plastic zone, strength criterion, mining influence, roadway surrounding rock control

CLC Number: 

  • TU 435
[1] GAO Ming-shi, YU Xin, XU Dong, HE Yong-liang, ZHAO Shi-fan, . Graded support of rock burst roadway based on balance theory of impact energy and absorbed energy [J]. Rock and Soil Mechanics, 2024, 45(1): 38-48.
[2] CHEN Xi. A new theoretical peak shear strength criterion of rock joint based on the directional roughness parameter [J]. Rock and Soil Mechanics, 2023, 44(4): 1075-1088.
[3] ZHI Bin, WANG Xiao-chan, LIU En-long, . Influence of particle shape on the particle crushing law and strength criterion for granular materials [J]. Rock and Soil Mechanics, 2023, 44(3): 649-662.
[4] ZHANG Zhi-fei, HUANG Man, TANG Zhi-cheng, . Empirical criterion for evaluating the peak shear strength of discontinuity with different joint wall strengths [J]. Rock and Soil Mechanics, 2023, 44(2): 507-519.
[5] JIANG Yue, ZHOU Hui, LU Jing-jing, GAO Yang, . True triaxial test on hollow cylindrical sandstone [J]. Rock and Soil Mechanics, 2022, 43(4): 932-944.
[6] WANG Yong-hong, DU Wen, ZHANG Guo-hui, SONG Yang, . An elasto-plastic analysis of a deep buried tunnel in rock mass based on generalized Zhang-Zhu strength criterion and preliminary application [J]. Rock and Soil Mechanics, 2022, 43(3): 819-830.
[7] WU Xiang-ye, WANG Jing-ya, CHEN Shi-jiang, ZHANG Yu-jiang, BU Qing-wei, . Regulation principle and stability control of plastic zone in repeated mining roadway [J]. Rock and Soil Mechanics, 2022, 43(1): 205-217.
[8] ZHOU Chao-biao, LIU Dong, JING Qing-hui, . Mechanical properties and failure mechanisms of the rocklike specimens under tension shear effects [J]. Rock and Soil Mechanics, 2021, 42(12): 3335-3344.
[9] LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, . Mechanical properties and strength criterion of Zhanjiang structured clay in three-dimensional stress state [J]. Rock and Soil Mechanics, 2021, 42(11): 3090-3100.
[10] WANG Hui, ZHOU Shi-chen, ZHOU Bo, XUE Shi-feng, LIN Ying-song, WU Hai-ming, . Statistical damage models for hydrate-bearing sediments based on different failure criteria [J]. Rock and Soil Mechanics, 2020, 41(12): 4015-4026.
[11] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
[12] YIN Guang-zhi, LU Jun, ZHANG Dong-ming, LI Ming-hui, DENG Bo-zhi, LIU Chao, . Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 1-10.
[13] WANG Rui, YAN Shuai, BAI Jian-biao, CHANG Zhi-guo, SONG Yuan-ba, . Theoretical analysis of the destabilization mechanism and the damaged width of rib pillar in open-pit highwall mining [J]. Rock and Soil Mechanics, 2019, 40(8): 3167-3180.
[14] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[15] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .